(10分)已知拋物線的頂點是雙曲線的中心,而焦點是雙曲線的頂點,求拋物線的方程.
科目:高中數學 來源: 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點,與x軸交于點M,且y1y2=-1,
(Ⅰ)求證:點的坐標為
;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線的焦點,且離心率等于
,直線
與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點F是否可以為的垂心?若可以,求出直線
的方程;若不行,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題15分)設拋物線和點
,.斜率為
的直線與拋物線
相交不同的兩個點
.若點
恰好為
的中點.
(1)求拋物線的方程,
(2) 拋物線上是否存在異于
的點
,使得經過點
的圓和拋物線
在
處有相同的切線.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題14分)已知直線經過橢圓
的左頂點A和上頂點D,橢圓
的右頂點為
,點
是橢圓
上位于
軸上方的動點,直線
與直線
分別交于
兩點。
(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)當線段的長度最小時,在橢圓
上是否存在這樣的點
,使得
的面積為
?若存在,確定點
的個數,若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知焦點在軸上的雙曲線
的兩條漸近線過坐標原點,且兩條漸近線與以
點 為圓心,1為半徑的圓相切,又知
的一個焦點與A關于直線
對稱.
(1)求雙曲線的方程;
(2)設直線與雙曲線
的左支交于
,
兩點,另一直線
經過
及
的中點,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com