日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
10.已知某幾何體的三視圖如圖,則該幾何體的體積是(  )
A.48B.36C.24D.12

分析 由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,
底面面積S=3×4=12,
高h=3,
故體積V=$\frac{1}{3}Sh$=12,
故選:D

點評 本題考查的知識點是棱柱的體積和表面積,棱錐的體積和表面積,簡單幾何體的三視圖,難度基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.函數f(x)=2cos2x•tanx+cos2x的最小正周期為π;最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數y=sinx+1與y=$\frac{x+2}{x}$在[-a,a](a∈Z,且a>2017)上有m個交點(x1,y1),(x2,y2),…,(xm,ym),則(x1+y1)+(x2+y2)+…+(xm+ym)=(  )
A.0B.mC.2mD.2017

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.某空間幾何體的三視圖如圖所示,則該幾何體的表面積是$32+8\sqrt{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知數列{an}的前n項和${A_n}={n^2}({n∈{N^*}}),{b_n}=\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}({n∈{N^*}})$,數列{bn}的前n項和為Bn
(1)求數列{an}的通項公式;
(2)設${c_n}=\frac{a_n}{2^n}({n∈{N^*}})$,求數列{cn}的前n項和Cn
(3)證明:$2n<{B_n}<2n+2({n∈{N^*}})$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知函數$f(x)=\left\{{\begin{array}{l}{1-|x|,x≤1}\\{{{({x-1})}^2},x>1}\end{array}}\right.$,若方程f(1-x)-m=0有三個不相等的實數根,則實數m的取值范圍為(  )
A.(-∞,1)B.$({\frac{3}{4},+∞})$C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足$\frac{2a-b}{cosB}=\frac{c}{cosC}$.
(1)求角C的值;
(2)若c=7,△ABC的面積為$10\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.i是虛數單位,復數z=a+i(a∈R)滿足z2+z=1-3i,則|z|=(  )
A.$\sqrt{2}$或$\sqrt{5}$B.2或5C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.如圖所示,在Rt△ABC中,已知A(-2,0),直角頂點$B(0,-2\sqrt{2})$,點C在x軸上.
(1)求Rt△ABC外接圓的方程;
(2)求過點(0,3)且與Rt△ABC外接圓相切的直線的方程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品高潮呻吟久久久 | 四虎中文字幕 | 在线中文字幕日韩 | 久久精品国产亚洲blacked | 色av综合网 | 激情一区二区三区 | 欧美一区二区大片 | 日韩欧美一区二区在线 | av一区二区三区 | 一级欧美 | 亚洲黄色性视频 | 午夜三区| 精品黑人一区二区三区久久 | 久久成人一区 | 久久免费视频观看 | 综合久久网 | 欧美夜夜爽| 色婷婷久久| 欧洲精品久久久 | 亚洲精品久久久久久久久久久 | 国产免费视频 | 国内a∨免费播放 | 久久亚洲精品中文字幕蜜潮电影 | 国产一区二区免费电影 | 操老逼 | 日本免费电影一区 | 久久成人一区 | 亚洲欧美日韩另类精品一区二区三区 | 日韩在线不卡 | 国产一级91 | 一区二区三区在线观看视频 | 亚欧洲精品视频在线观看 | 中文字幕亚洲一区二区三区 | 视频一区二区三区在线观看 | 成人国产精品一区二区毛片在线 | 蜜桃精品在线观看 | 秋霞一区二区三区 | 久久精品国产精品青草 | 国产欧美精品一区二区 | 日韩另类 | 综合久久国产九一剧情麻豆 |