【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)x萬(wàn)件,需另投入流動(dòng)成本C(x)萬(wàn)元,當(dāng)年產(chǎn)量小于7萬(wàn)件時(shí),C(x)=x2+2x(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),C(x)=6x+1nx+
﹣17(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.
(1)寫出年利潤(rùn)P(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收人﹣固定成本﹣流動(dòng)成本
(2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?(取e3≈20)
【答案】(1) (2) 當(dāng)年產(chǎn)量約為20萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大,最大利潤(rùn)為11萬(wàn)元
【解析】
(1)根據(jù)年利潤(rùn)=銷售額-投入的總成本-固定成本,分0<x<7和當(dāng)x≥7兩種情況得到P(x)與x的分段函數(shù)關(guān)系式;
(2)當(dāng)0<x<7時(shí)根據(jù)二次函數(shù)求最大值的方法來(lái)求L的最大值,當(dāng)x≥7時(shí),利用導(dǎo)數(shù)求P(x)的最大值,最后綜合即可.
(1)產(chǎn)品售價(jià)為6元,則萬(wàn)件產(chǎn)品銷售收入為
萬(wàn)元.
依題意得,當(dāng)時(shí),
,
當(dāng)時(shí),
.
∴
(2)當(dāng)時(shí),
,
∴當(dāng)時(shí),
的最大值為
(萬(wàn)元).
當(dāng)時(shí),
,
∴,
∴當(dāng)時(shí),
,
單調(diào)遞減,
∴當(dāng)時(shí),
取最大值
(萬(wàn)元),
∵,
∴當(dāng)時(shí),
取得最大值
萬(wàn)元,
即當(dāng)年產(chǎn)量約為20萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大,最大利潤(rùn)為11萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長(zhǎng)度與肚臍至足底的長(zhǎng)度之比是(
≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長(zhǎng)度與咽喉至肚臍的長(zhǎng)度之比也是
.若某人滿足上述兩個(gè)黃金分割比例,且腿長(zhǎng)為105cm,頭頂至脖子下端的長(zhǎng)度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調(diào)性;
(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題中:①在回歸分析中,可用相關(guān)系數(shù)r的值判斷模型的擬合效果,|r|越大,模擬的擬合效果越好;②在一組樣本數(shù)據(jù)不全相等)的散點(diǎn)圖中,若所有樣本點(diǎn)
都在直線
上,則這組樣本數(shù)據(jù)的線性相關(guān)系數(shù)為
;③對(duì)分類變量x與y的隨機(jī)變量
來(lái)說(shuō),
越小,判斷“x與y有關(guān)系”的把握程度越大.其中真命題的個(gè)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年春節(jié)期間,我國(guó)高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費(fèi)點(diǎn)記錄了大年初三上午這一時(shí)間段內(nèi)通過(guò)的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過(guò)該收費(fèi)點(diǎn),它們通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如下圖所示,其中時(shí)間段
記作區(qū)間
,
記作
,
記作
,
記作
,例如:10點(diǎn)04分,記作時(shí)刻64.
(1)估計(jì)這600輛車在時(shí)間段內(nèi)通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值
同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表
;
(2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再?gòu)倪@10輛車中隨機(jī)抽取4輛,設(shè)抽到的4輛車中,在之間通過(guò)的車輛數(shù)為
,求
的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在每天通過(guò)該收費(fèi)點(diǎn)的時(shí)刻服從正態(tài)分布,其中
可用這600輛車在
之間通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,
可用樣本的方差近似代替
同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表
,已知大年初五全天共有1000輛車通過(guò)該收費(fèi)點(diǎn),估計(jì)在
之間通過(guò)的車輛數(shù)
結(jié)果保留到整數(shù)
.
參考數(shù)據(jù):若,則
;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是各項(xiàng)均為正數(shù)的等比數(shù)列,
是等差數(shù)列,且
.
(I)求和
的通項(xiàng)公式;
(II)設(shè)數(shù)列滿足
,求
;
(III)對(duì)任意正整數(shù),不等式
成立,求正數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園為了美化環(huán)境和方便顧客,計(jì)劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面和兩條長(zhǎng)度相等的直線型路面
、
,橋面跨度
的長(zhǎng)不超過(guò)
米,拱橋
所在圓的半徑為
米,圓心
在水面
上,且
和
所在直線與圓
分別在連結(jié)點(diǎn)
和
處相切.設(shè)
,已知直線型橋面每米修建費(fèi)用是
元,弧形橋面每米修建費(fèi)用是
元.
(1)若橋面(線段、
和弧
)的修建總費(fèi)用為
元,求
關(guān)于
的函數(shù)關(guān)系式;
(2)當(dāng)為何值時(shí),橋面修建總費(fèi)用
最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線經(jīng)過(guò)橢圓
(
)的左頂點(diǎn)
和
上頂點(diǎn).橢圓
的右頂點(diǎn)為
,點(diǎn)
是橢圓
上位于
軸上方的動(dòng)點(diǎn),直線
、
與直線
分別交于
、
兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求線段長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),橢圓
上是否存在這樣的點(diǎn)
,使得
的面積為
?若存在,確定點(diǎn)
的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com