A. | 任意m∈A,都有f(m+3)>0 | B. | 任意m∈A,都有f(m+3)<0 | ||
C. | 存在m∈A,都有f(m+3)=0 | D. | 存在m∈A,都有f(m+3)<0 |
分析 由題意可得 a>0,且c<0,-2<$\frac{c}{a}$<-$\frac{1}{2}$,x=1為f(x)的一個零點,再由根與系數的關系可得,另一零點為$\frac{c}{a}$.可得A={m|$\frac{c}{a}$<m<1},m+3>1,有f(m+3)>0恒成立,從而得出結論.
解答 解:∵函數f(x)=ax2+bx+c,且a>b>c,a+b+c=0,故有 a>0,且c<0.
∴0<a+a+c=2a+c,即 $\frac{c}{a}$>-2,且 0>a+c+c=a+2c,即$\frac{c}{a}$<-$\frac{1}{2}$,因此有-2<$\frac{c}{a}$<-$\frac{1}{2}$,
又f(1)=a+b+c=0,故x=1為f(x)的一個零點.
由根與系數的關系可得,另一零點為 $\frac{c}{a}$<0,所以有:A={m|$\frac{c}{a}$<m<1}.
所以,m+3>$\frac{c}{a}$+3>1,所以有f(m+3)>0恒成立,
故選:A.
點評 本題主要考查二次函數的性質,一元二次方程根的分布與系數的關系,體現了轉化的數學思想,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}x-y-\sqrt{3}=0$ | B. | $x-\sqrt{3}y+\sqrt{3}=0$ | C. | $x-\sqrt{3}y-1=0$ | D. | $\sqrt{3}x-y+1=0$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 等于0 | B. | 等于$\frac{π}{6}$ | C. | 等于$\frac{π}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com