分析:已知兩條直線:l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0.l1∥l2?$\left\{\begin{array}{l}{A}_{1}{B}_{2}-{A}_{2}{B}_{1}=0\\{A}_{1}{C}_{2}-{A}_{2}{C}_{1}≠0\end{array}\right.$,根據(jù)直線l1:ax+2y+6=0與直線l2:x+(a-1)y+(a2-1)=0的方程,代入構(gòu)造方程即可得到答案.
解答:解:若直線l1:ax+2y+6=0與直線l2:x+(a-1)y+(a2-1)=0平行
則a(a-1)-2=0,即a2-a-2=0
解得:a=2,或a=-1
又∵a=2時,l1:x+y+3=0與l2:x+y+3=0重合
故a=-1
故答案為:-1
點評:兩條直線:l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0.l1∥l2?$\left\{\begin{array}{l}{A}_{1}{B}_{2}-{A}_{2}{B}_{1}=0\\{A}_{1}{C}_{2}-{A}_{2}{C}_{1}≠0\end{array}\right.$或$\left\{\begin{array}{l}{A}_{1}{B}_{2}-{A}_{2}{B}_{1}=0\\{B}_{1}{C}_{2}-{B}_{2}{C}_{1}≠0\end{array}\right.$