日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】在一場娛樂晚會上,有5位民間歌手(1至5號)登臺演唱,由現場數百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機選2名.觀眾乙和丙對5位歌手的演唱沒有偏愛,因此在1至5號中隨機選3名歌手.
(1)求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(2)X表示3號歌手得到觀眾甲、乙、丙的票數之和,求X的分布列和數學期望.

【答案】
(1)解:設事件A表示:“觀眾甲選中3號歌手且觀眾乙未選中3號歌手”,

觀眾甲選中3號歌手的概率為 ,觀眾乙未選中3號歌手的概率為1﹣ =

∴P(A)=

∴觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率為


(2)解:X表示3號歌手得到觀眾甲、乙、丙的票數之和,則X可取0,1,2,3.

觀眾甲選中3號歌手的概率為 ,觀眾乙選中3號歌手的概率為

當觀眾甲、乙、丙均未選中3號歌手時,這時X=0,P(X=0)=(1﹣ )(1﹣ 2=

當觀眾甲、乙、丙只有一人選中3號歌手時,這時X=1,

P(X=1)= (1﹣ 2+(1﹣ (1﹣ )+(1﹣ )(1﹣ =

當觀眾甲、乙、丙只有二人選中3號歌手時,這時X=2,

P(X=2)= (1﹣ )+(1﹣ + (1﹣ =

當觀眾甲、乙、丙都選中3號歌手時,這時X=3,

P(X=3)= 2=

X的分布列如下:

X

0

1

2

3

P

∴數學期望EX=0× +1× +2× +3× =


【解析】(1)設事件A表示:“觀眾甲選中3號歌手且觀眾乙未選中3號歌手”,觀眾甲選中3號歌手的概率為 ,觀眾乙未選中3號歌手的概率為1﹣ = ,利用互斥事件的概率公式,即可求得結論;(2)由題意,X可取0,1,2,3,求出相應的概率,即可得到X的分布列與數學期望.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的兩個焦點分別為F1(﹣1,0),F2(1,0),且橢圓C經過點
(1)求橢圓C的離心率:
(2)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且 ,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定常數c>0,定義函數f(x)=2|x+c+4|﹣|x+c|.數列a1 , a2 , a3 , …滿足an+1=f(an),n∈N*
(1)若a1=﹣c﹣2,求a2及a3
(2)求證:對任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差數列?若存在,求出所有這樣的a1;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 平面內一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行;

B. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行;

C. 平行于同一個平面的兩個平面平行;

D. 若兩個平面平行,則其中一個平面內的直線平行于另一個平面;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,某公路AB一側有一塊空地△OAB,其中OA=3km,OB=3km,∠AOB=90°.當地政府擬在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(M,N不與A,B重合,M在A,N之間),且∠MON=30°.

(1)若M在距離A點2km處,求點M,N之間的距離;

(2)為節省投入資金,人工湖△OMN的面積要盡可能小.試確定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2016高考新課標II,理15)有三張卡片,分別寫有121323.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數字不是1”,丙說:我的卡片上的數字之和不是5”,則甲的卡片上的數字是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=sin(2x+φ)的圖象沿x軸向左平移 個單位后,得到一個偶函數的圖象,則φ的一個可能的值為(
A.
B.
C.0
D.-

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱錐P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分別是AQ,BQ,AP,BP的中點,AQ=2BD,PD與EQ交于點G,PC與FQ交于點H,連接GH.

(1)求證:AB∥GH;
(2)求二面角D﹣GH﹣E的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 已知函數f(x)=ax3+bx2的圖象經過點M(1,4),曲線在點M處的切線恰好與直線x+9y﹣3=0垂直.

(1)求實數a、b的值

(2)若函數f(x)在區間[m,m+1]上單調遞增,求m的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 九九热免费精品视频 | 黄av在线 | 蜜桃av导航 | 国产精品视频久久久 | 海外中文字幕在线观看 | 亚洲毛片在线观看 | 操操日 | 欧美a一级 | 91久久国产综合久久 | 91电影在线 | 欧美精品黄色 | 日韩欧美在线观看视频网站 | 中文字幕丝袜 | 亚洲精品二区三区 | 最新中文字幕在线观看 | 亚洲 中文 欧美 日韩 在线观看 | 亚洲欧美aa| 91精品久久久久久久久 | 日本少妇视频 | 成人精品一区 | 久久久久久久av | 一区影院| 欧美日韩第一 | 欧美视频一区二区在线 | 中文字幕精品一区二区三区精品 | 日本高清一区 | 日韩中文视频 | 天堂一区二区三区 | 久久久精品 | 亚洲成人一区在线观看 | 成人在线不卡 | 91成人精品视频 | 亚洲第一精品在线 | 亚洲精品午夜电影 | 精品国产乱码久久久久久丨区2区 | 免费黄色的视频 | 蜜臀在线视频 | 久草精品在线 | 特级黄一级播放 | 欧美精品在欧美一区二区少妇 | 精品久久久久久久人人人人传媒 |