日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一點P(1,$\frac{3}{2}$)與橢圓右焦點的連線垂直于x軸,直線l:y=kx+m與橢圓C相交于A、B兩點(均不在坐標軸上).
(1)求橢圓C的標準方程;
(2)設O為坐標原點,若△AOB的面積為$\sqrt{3}$,試判斷直線OA與OB的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.

分析 (1)由題意可知:橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦點在x軸上,c=1,則a2=b2+1,將P(1,$\frac{3}{2}$)代入橢圓方程,即可求得a和b的值,求得橢圓方程;
(2)將直線方程代入橢圓方程,由△>0,求得m2<4k2+3.則丨x1-x2丨=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$,則S△OAB=$\frac{1}{2}$•|m|•|x1-x2|=$\frac{1}{2}$•|m|•$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$=$\sqrt{3}$,即可求得4k2-m2=m2-3,kOA•kOB=$\frac{{y}_{2}{y}_{1}}{{x}_{1}{x}_{2}}$=-$\frac{3}{4}$•$\frac{4{k}^{2}-{m}^{2}}{{m}^{2}-3}$=-$\frac{3}{4}$,直線OA與OB的斜率之積為定值-$\frac{3}{4}$.

解答 解:(1)由題意知:橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦點在x軸上,c=1,則a2=b2+1,

由P(1,$\frac{3}{2}$)在橢圓上,則$\frac{1}{{b}^{2}+1}+\frac{9}{4{b}^{2}}=1$,解得:b2=3,則a2=4,
∴橢圓C的標準方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設點A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(4k2+3)2+8kmx+4m2-12=0,
由△=(8km)2-16(4k2+3)(m2-3)>0,得m2<4k2+3.
∵x1+x2=-$\frac{8km}{4{k}^{2}+3}$,x1x2=$\frac{4{m}^{2}-12}{4{k}^{2}+3}$,
丨x1-x2丨=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(-\frac{8km}{4{k}^{2}+3})^{2}-4×\frac{4{m}^{2}-12}{4{k}^{2}+3}}$=$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$
∴S△OAB=$\frac{1}{2}$•|m|•|x1-x2|=$\frac{1}{2}$•|m|•$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$=$\sqrt{3}$,
化簡得4k2+3-2m2=0,滿足△>0,
從而有4k2-m2=m2-3,
∴kOA•kOB=$\frac{{y}_{2}{y}_{1}}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}({x}_{1}+m)({x}_{2}+m)}{{x}_{1}{x}_{2}}$=$\frac{-12{k}^{2}+3{m}^{2}}{4{m}^{2}-12}$=-$\frac{3}{4}$•$\frac{4{k}^{2}-{m}^{2}}{{m}^{2}-3}$,由上式,得$\frac{4{k}^{2}-{m}^{2}}{{m}^{2}-3}$=1,
∴kOA•kOB=-$\frac{3}{4}$,
∴直線OA與OB的斜率之積為定值-$\frac{3}{4}$.

點評 本題考查橢圓的標準方程,直線與橢圓的位置關系,考查韋達定理,弦長公式,三角形面積公式與直線的斜率公式的綜合應用,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源:2016-2017學年安徽六安一中高一上國慶作業二數學試卷(解析版) 題型:填空題

已知集合,且,則的取值范圍是_______.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.如圖,網格紙上小正方形的邊長為1,粗線畫出的是一正方體被截去一部分后所得幾何體的三視圖,則該幾何體的表面積為(  )
A.54B.162C.54+18$\sqrt{3}$D.162+18$\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,$CD=2AB=2BP=\sqrt{2}AD$,$\overrightarrow{CE}=λ\overrightarrow{EB}$(λ>0),DE⊥平面PBC,側面ABP⊥底面ABCD
(1)求λ的值;
(2)求直線CD與面PDE所成角θ的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓(x-5)2+y2=9的兩條切線,切點為M,N,|MN|=3$\sqrt{3}$
(1)求拋物線E的方程;
(2)設A,B是拋物線E上分別位于x軸兩側的兩個動點,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$(其中O為坐標原點).
①求證:直線AB必過定點,并求出該定點Q的坐標;
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.在直角坐標系xOy中,曲線C1的參數方程為 $\left\{\begin{array}{l}x=\sqrt{2}+2t\\ y=-\sqrt{2}+t\end{array}$(t為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2的方程為ρ=$\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$.
(Ⅰ)求曲線C1、C2的直角坐標方程;
(Ⅱ)若A、B分別為曲線C1、C2上的任意點,求|AB|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.函數f(x)=$\frac{x}{{e}^{2x}}$+1的最大值為$\frac{1}{2e}+1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.若f(x)=$\left\{{\begin{array}{l}{{a^x},x<0}\\{{{log}_a}x,x>0}\end{array}}$,那么y=f(x)-a的零點個數有(  )
A.0個B.1個
C.2個D.a的值不同時零點的個數不同

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色婷婷综合久久久久中文一区二区 | 久久久精品国产 | 精品久久国产 | www.色涩涩.com网站 | 国产999精品久久久久久麻豆 | 国产v日产∨综合v精品视频 | 国产精品免费看 | 成人一区二区三区视频 | 91精品国产欧美一区二区成人 | 亚欧在线观看 | 欧美日韩视频在线第一区 | 国产成人欧美一区二区三区一色天 | 成人久久久精品乱码一区二区三区 | 妞干网在线视频 | 国产96视频 | 国产成人一区二区三区 | 国产亚洲精品久久久456 | 在线a视频 | 99国产精品久久久久久久 | 久久夜夜操妹子 | 在线观看不卡 | 亚洲狠狠爱一区二区三区 | 男女羞羞视频在线 | 黄色片子视频 | 久久精品视频网 | 一级电影院 | 中文字幕精品三级久久久 | 国产成人精品免费视频 | 日韩精品一区二区三区第95 | 日韩一级免费在线观看 | 国产欧美日韩在线观看 | 99国产精品99久久久久久 | 亚洲一区二区三区四区五区午夜 | 综合二区 | 在线播放黄色网址 | 精品国产一区二区三区性色av | 国产a久久精品一区二区三区 | 99成人精品 | 久久久男人天堂 | 国产亚洲一区二区不卡 | 精品久久久久久久久久久久久 |