分析 (Ⅰ)由題意可知:設橢圓E的標準方程:mx2+ny2=1(m>0,n>0),將($\sqrt{2},-\frac{\sqrt{2}}{2}$)與(1,$\frac{\sqrt{3}}{2}$)兩點,代入橢圓方程,即可求得m和n的值,求得橢圓標準方程;
(Ⅱ)將直線方程代入橢圓方程,由△>0,求得4k2+1-m2>0 ①,根據韋達定理及中點坐標公式,則$\frac{{y}_{0}-0}{{x}_{0}-(-1)}$=-$\frac{1}{k}$,整理得3km=4k2+1,即可求得
k>$\frac{\sqrt{5}}{5}$,則丨PQ丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$,O到直線l的距離為d=$\frac{m}{\sqrt{1+{k}^{2}}}$,則三角形△OPQ面積S△OPQ=$\frac{1}{2}$•d•丨PQ丨=$\frac{2\sqrt{20+\frac{1}{{k}^{2}}-\frac{1}{{k}^{4}}}}{9}$,由二次函數的性質即可求得△OPQ面積的最大值及此時直線l的方程..
解答 解:(Ⅰ)由題意可知:設橢圓E的標準方程:mx2+ny2=1(m>0,n>0),由橢圓經過($\sqrt{2},-\frac{\sqrt{2}}{2}$)與(1,$\frac{\sqrt{3}}{2}$)兩點,
$\left\{\begin{array}{l}{2m+\frac{1}{2}=1}\\{m+\frac{3}{4}n=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{m=\frac{1}{4}}\\{n=1}\end{array}\right.$,
∴橢圓E的方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)設P(x1,y1),Q(x2,y2),PQ的中點為E(x0,y0)
則 $\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得:(1+4k2)x2+8kmx+4m2-4=0,
∵△=16(4k2+1-m2 )>0,即 4k2+1-m2>0 ①,
韋達定理可知:x1+x2=$\frac{-8km}{1+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
由中點坐標公式可知:x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-4km}{1+4{k}^{2}}$,y0=kx0+m=$\frac{m}{1+4{k}^{2}}$,
由弦長公式可知:丨PQ丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{(-\frac{8km}{1+4{k}^{2}})^{2}-4×\frac{4{m}^{2}-4}{1+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$,
又點[-1,0]不在橢圓OE上.
依題意有 $\frac{{y}_{0}-0}{{x}_{0}-(-1)}$=-$\frac{1}{k}$,整理得3km=4k2+1 ②.
由①②可得k2>$\frac{1}{5}$,
∵m>0,∴k>0,
∴k>$\frac{\sqrt{5}}{5}$,
設O到直線l的距離為d=$\frac{m}{\sqrt{1+{k}^{2}}}$,
則S△OPQ=$\frac{1}{2}$•d•丨PQ丨=$\frac{1}{2}$•$\frac{m}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$=$\frac{2\sqrt{(4{k}^{2}+1)(5{k}^{2}-1)}}{9{k}^{2}}$=$\frac{2\sqrt{20+\frac{1}{{k}^{2}}-\frac{1}{{k}^{4}}}}{9}$.
當 $\frac{1}{{k}^{2}}$=$\frac{1}{2}$時,OPQ 的面積取最大值1,此時k=$\sqrt{2}$,m=$\frac{3\sqrt{2}}{2}$,
∴直線方程為 y=$\sqrt{2}$x+$\frac{3\sqrt{2}}{2}$.
點評 本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理點到直線的距離公式,中點坐標及三角形面積公式與二次函數的性質的綜合應用,考查計算能力,屬于中檔題.
科目:高中數學 來源:2016-2017學年河北正定中學高二上月考一數學(理)試卷(解析版) 題型:選擇題
為了了解某學校1200名高中男生的身體發育情況,抽查了該校100名高中男生的體重情況.根據所得數據畫出樣本的頻率分布直方圖,據此估計該校高中男生體重在的人數為( )
A.360 B.336 C.300 D.280
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com