分析 (1)根據數列的遞推公式代值計算即可,并猜想其結論,
(2)利用數學歸納法進行證明.
解答 解:(1)S1=a1=-$\frac{2}{3}$,S2+$\frac{1}{{S}_{2}}$+2=S2-(-$\frac{2}{3}$),解得S2=-$\frac{3}{4}$,
S3+$\frac{1}{{S}_{3}}$+2=S3-S2⇒S3=-$\frac{4}{5}$,S4+$\frac{1}{{S}_{4}}$+2=S4-S3⇒S4=-$\frac{5}{6}$.
猜想:Sn=-$\frac{n+1}{n+2}$(n∈N+).
(2)證:①當n=1時,左邊=S1=a1=-$\frac{2}{3}$,右邊=-$\frac{1+1}{1+2}$=-$\frac{2}{3}$.
∵左邊=右邊,
∴原等式成立.
②當n=k時,假設Sk=-$\frac{k+1}{k+2}$成立,
由Sk+1+$\frac{1}{Sk+1}$+2=Sk+1-Sk得$\frac{1}{Sk+1}$=-Sk-2=$\frac{k+1}{k+2}$-2=$\frac{k+1-2k-4}{k+2}$=$\frac{-k-3}{k+2}$=-$\frac{k+3}{k+2}$,
∴Sk+1=-$\frac{k+2}{k+3}$=-$\frac{(k+1)+1}{(k+1)+2}$,
∴當n=k+1時,原等式也成立.
綜合①②得對一切n∈N+,Sn=-$\frac{n+1}{n+2}$成立.
點評 本題考查數列的前n項和的求法,是中檔題,解題時要認真審題,注意數學歸納法的合理運用.
科目:高中數學 來源: 題型:解答題
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | -3 | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com