A. | 4π | B. | $\frac{9π}{2}$ | C. | $\frac{125π}{6}$ | D. | $\frac{32π}{3}$ |
分析 先保證截面圓與△ABC內切,記圓O的半徑為r,由等面積法得(AC+AB+BC)r=6×8,解得r=2.由于三棱柱高為5,此時可以保證球在三棱柱內部,球的最大半徑為2,由此能求出結果.
解答 解:如圖,由題知,球的體積要盡可能大時,球需與三棱柱內切.
先保證截面圓與△ABC內切,記圓O的半徑為r,
則由等面積法得${S_{△ABC}}=\frac{1}{2}AC\;•\;r+\frac{1}{2}AB\;•\;r+\frac{1}{2}BC\;•\;r=\frac{1}{2}×6×8$,
所以(AC+AB+BC)r=6×8,又AB=6,BC=8,
所以AC=10,所以r=2.由于三棱柱高為5,此時可以保證球在三棱柱內部,
若r增大,則無法保證球在三棱柱內,
故球的最大半徑為2,所以$V=\frac{32π}{3}$.
故選:D.
點評 本題考查球的最大體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 如果平面α⊥平面β,任取直線m?α,那么必有m⊥β | |
B. | 如果直線m∥平面α,直線n?α內,那么m∥n | |
C. | 如果直線m∥平面α,直線n∥平面α,那么m∥n | |
D. | 如果平面α外的一條直線m垂直于平面α內的兩條相交直線,那么m⊥α |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com