已知數(shù)列 的前
項(xiàng)和為
,設(shè)
,且
.
(1)證明{}是等比數(shù)列;
(2)求與
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足
(
),則是否存在這樣的實(shí)數(shù)
使得
為等比數(shù)列;
(3)數(shù)列滿足
為數(shù)列
的前n項(xiàng)和,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點(diǎn)
在函數(shù)
的圖象上,其中
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(2)記,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)正項(xiàng)數(shù)列的前
項(xiàng)和
,且滿足
.
(Ⅰ)計(jì)算的值,猜想
的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列
的前
項(xiàng)和,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列具有性質(zhì):①
為整數(shù);②對(duì)于任意的正整數(shù)
,當(dāng)
為偶數(shù)時(shí),
;當(dāng)
為奇數(shù)時(shí),
.
(1)若為偶數(shù),且
成等差數(shù)列,求
的值;
(2)設(shè)(
且
N),數(shù)列
的前
項(xiàng)和為
,求證:
;
(3)若為正整數(shù),求證:當(dāng)
(
N)時(shí),都有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項(xiàng)和為
,點(diǎn)
在直線
上.數(shù)列
滿足
,且
,前9項(xiàng)和為153.
(1)求數(shù)列、
{的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
和為
,求使不等式
對(duì)一切
都成立的最大正整數(shù)
的值;
(3)設(shè),問是否存在
,使得
成立?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)曲線:
上的點(diǎn)
到點(diǎn)
的距離的最小值為
,若
,
,
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)是否存在常數(shù),使得對(duì)
,都有不等式:
成立?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知方程tan2x一tan x+1=0在x
[0,n
)( n
N*)內(nèi)所有根的和記為an
(1)寫出an的表達(dá)式;(不要求嚴(yán)格的證明)
(2)記Sn = a1 + a2 +…+ an求Sn;
(3)設(shè)bn =(kn一5) ,若對(duì)任何n
N* 都有an
bn,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列,
,且
依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式
;
(Ⅱ)若,求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)若,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com