【題目】在高中學習過程中,同學們經常這樣說:“如果物理成績好,那么學習數學就沒什么問題.”某班針對“高中生物理學習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論,現從該班隨機抽取5名學生在一次考試中的物理和數學成績,如表:
成績/編號 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數學(y) | 130 | 125 | 110 | 95 | 90 |
(參考公式: =
,
=
﹣
)
參考數據:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數學成績y關于物理成績x的線性回歸方程 =
x+
(
精確到0.1),若某位學生的物理成績為80分,預測他的數學成績;
(2)要從抽取的這五位學生中隨機選出三位參加一項知識競賽,以X表示選中的學生的數學成績高于100分的人數,求隨機變量X的分布列及數學期望.
【答案】
(1)解:根據表中數據計算 =
×(90+85+74+68+63)=76,
=
×(130+125+110+95+90)=110,
=902+852+742+682+632=29394,
=90×130+85×125+74×110+68×95+63×90=42595,
=
=
=
≈1.5,
=
﹣
=110﹣1.5×76=﹣4;
∴x、y的線性回歸方程是 =1.5x﹣4,
當x=80時, =1.5×80﹣4=116,
即某位同學的物理成績為80分,預測他的數學成績是116
(2)解:抽取的五位學生中成績高于100分的有3人,
X表示選中的同學中高于100分的人數,可以取1,2,3,
P(X=1)= =
,P(X=2)=
=
,
P(X=3)= =
;
故X的分布列為:
X | 1 | 2 | 3 |
p |
X的數學期望值為E(X)=1× +2×
+3×
=1.8
【解析】(1)根據表中數據計算 、
,求出回歸系數
、
,寫出回歸方程,利用回歸方程計算x=80時
的值即可;(2)抽取的五位學生中成績高于100分的有3人,X的可以取1,2,3,計算對應的概率值,寫出X的分布列,計算數學期望值.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,D為AA1的中點,E為BC的中點.
(1)求證:直線AE∥平面BDC1;
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x),當x∈[0,2]時,f(x)=4(1﹣|x﹣1|),且對于任意實數x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f(
﹣1).若g(x)=f(x)﹣logax有且只有三個零點,則a的取值范圍是( )
A.[2,10]
B.[ ,
]
C.(2,10)
D.[2,10)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知長方體ABCD中, 為DC的中點.將△ADM沿AM折起,使得AD⊥BM.
(1)求證:平面ADM⊥平面ABCM;
(2)是否存在滿足 的點E,使得二面角E﹣AM﹣D為大小為
.若存在,求出相應的實數t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=sin(2x+ )(x∈[0,
]),若方程f(x)=a恰好有三個根,分別為x1 , x2 , x3(x1<x2<x3),則x1+x2+x3的取值范圍是( )
A.[ ,
)
B.[ ,
)
C.[ ,
)
D.[ ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2sinθ.
(Ⅰ)判斷直線l與圓C的交點個數;
(Ⅱ)若圓C與直線l交于A,B兩點,求線段AB的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcos2 +acos2
=
c.
(Ⅰ)求證:a,c,b成等差數列;
(Ⅱ)若C= ,△ABC的面積為2
,求c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】調查表明:甲種農作物的長勢與海拔高度、土壤酸堿度、空氣濕度的指標有極強的相關性,現將這三項的指標分別記為x,y,z,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標ω=x+y+z的值評定這種農作物的長勢等級,若ω≥4,則長勢為一級;若2≤ω≤3,則長勢為二級;若0≤ω≤1,則長勢為三級,為了了解目前這種農作物長勢情況,研究人員隨機抽取10塊種植地,得到如表中結果:
種植地編號 | A1 | A2 | A3 | A4 | A5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) |
種植地編號 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅰ)在這10塊該農作物的種植地中任取兩塊地,求這兩塊地的空氣濕度的指標z相同的概率;
(Ⅱ)從長勢等級是一級的種植地中任取一塊地,其綜合指標為A,從長勢等級不是一級的種植地中任取一塊地,其綜合指標為B,記隨機變量X=A﹣B,求X的分布列及其數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com