【題目】已知拋物線的焦點到直線
的距離為
.
(1)求拋物線的方程;
(2)如圖,若,直線
與拋物線
相交于
兩點,與直線
相交于點
,且
,求
面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】春秋以前中國已有“抱甕而出灌”的原始提灌方式,使用提水吊桿——桔槔,后發展成轆轤.19世紀末,由于電動機的發明,離心泵得到了廣泛應用,為發展機械提水灌溉提供了條件.圖形如圖所示為灌溉抽水管道在等高圖的上垂直投影,在A處測得B處的仰角為37度,在A處測得C處的仰角為45度,在B處測得C處的仰角為53度,A點所在等高線值為20米,若BC管道長為50米,則B點所在等高線值為( )(參考數據)
A.30米B.50米C.60米D.70米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經貿交流合作,促進全球貿易和世界經濟增長,推動開放世界經濟發展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下列聯表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據列聯表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:.
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市數學教研室對全市2018級15000名的高中生的學業水平考試的數學成績進行調研,隨機選取了200名高中生的學業水平考試的數學成績作為樣本進行分析,將結果列成頻率分布表如下:
數學成績 | 頻數 | 頻率 |
5 | 0.025 | |
15 | 0.075 | |
50 | 0.25 | |
70 | 0.35 | |
45 | 0.225 | |
15 | 0.075 | |
合計 | 200 | 1 |
根據學業水平考試的數學成績將成績分為“優秀”、“合格”、“不合格”三個等級,其中成績大于或等于80分的為“優秀”,成績小于60分的為“不合格”,其余的成績為“合格”.
(1)根據頻率分布表中的數據,估計全市學業水平考試的數學成績的眾數、中位數(精確到0.1);
(2)市數學教研員從樣本中又隨機選取了名高中生的學業水平考試的數學成績,如果這
的最小值;
(3)估計全市2018級高中生學業水平考試“不合格”的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在極坐系中,點繞極點
順時針旋轉角
得到點
.以
為原點,極軸為
軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線
:
繞
逆時針旋轉
得到曲線
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)點的極坐標為
,直線
過點
且與曲線
交于
,
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙紐線最早于1694年被瑞士數學家雅各布·伯努利用來描述他所發現的曲線.在平面直角坐標系中,把到定點
,
距離之積等于
(
)的點的軌跡稱為雙紐線C.已知點
是雙紐線C上一點,下列說法中正確的有( )
①雙紐線C關于原點O中心對稱; ②;
③雙紐線C上滿足的點P有兩個; ④
的最大值為
.
A.①②B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為原點,極軸為
軸非負半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)在(1)中,設曲線經過伸縮變換
得到曲線
,設曲線
上任意一點為
,當點
到直線
的距離取最大值時,求此時點
的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代內容極為豐富的數學名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦的長度各是多少?假設
,現有下述四個結論:
①水深為12尺;②蘆葦長為15尺;③;④
.
其中所有正確結論的編號是( )
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com