日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
15.已知函數f(x)=aex-x+b,g(x)=x-ln(x+1),(a,b∈R,e為自然對數的底數),且曲線y=f(x)與y=g(x)在坐標原點處的切線相同.
(1)求f(x)的最小值;
(2)若x≥0時,f(x)≥kg(x)恒成立,試求實數k的取值范圍.

分析 (1)據導數的幾何意義和最值和函數的單調性的關系即可求出;
(2)構造函數,再分類討論,根據導數和單調性的關系即可求出.

解答 解:(1)因為f′(x)=aex-1,${g^'}(x)=1-\frac{1}{x+1}(x>-1)$,
依題意,f′(0)=g′(0),且f(0)=0,解得a=1,b=-1,
所以f′(x)=ex-1,當x<0時,f′(x)<0;當x>0時,f′(x)>0.
故f(x)的單調遞減區間為(-∞,0),單調遞增區間為(0,+∞).
∴當x=0時,f(x)取得最小值為0.
(2)由(1)知,f(x)≥0,即ex≥x+1,從而x≥ln(x+1),即g(x)≥0.
設F(x)=f(x)-kg(x)=ex+kln(x+1)-(k+1)x-1,
則${F^'}(x)={e^x}+\frac{k}{x+1}-(k+1)≥x+1+\frac{k}{x+1}-(k+1)$,
①當k=1時,因為x≥0,∴${F^'}(x)≥x+1+\frac{1}{x+1}-2≥0$(當且僅當x=0時等號成立)
此時F(x)在[0,+∞)上單調遞增,從而F(x)≥F(0)=0,即f(x)≥kg(x).
②當k<1時,由于g(x)≥0,所以g(x)≥kg(x),
又由(1)知,f(x)-g(x)≥0,所以f(x)≥g(x)≥kg(x),故F(x)≥0,
即f(x)≥kg(x).(此步也可以直接證k≤1)
③當k>1時,令$h(x)={e^x}+\frac{k}{x+1}-(k+1)$,則${h^'}(x)={e^x}-\frac{k}{{{{(x+1)}^2}}}$,
顯然h′(x)在[0,+∞)上單調遞增,又h′(0)=1-k<0,${h^'}(\sqrt{k}-1)={e^{\sqrt{k}-1}}-1>0$,
所以h′(x)在$(0,\sqrt{k}-1)$上存在唯一零點x0
當x∈(0,x0)時,h′(x)<0,∴h(x)在[0,x0)上單調遞減,
從而h(x)<h(0)=0,即F′(x)<0,所以F(x)在[0,x0)上單調遞減,
從而當x∈(0,x0)時,F(x)<F(0)=0,即f(x)<kg(x),不合題意.
綜上,實數k的取值范圍為(-∞,1].

點評 本題考查了導數和函數的單調性,考查了運算能力,轉化能力,解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.雙曲線x2-y2=2015的左,右頂點分別為A,B,P為其右支上不同于B的一點,且∠APB=2∠PAB,則∠PAB=

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知橢圓$\frac{8{x}^{2}}{81}$+$\frac{{y}^{2}}{36}$=1上一點M(x0,y0),且x0<0,y0=2.
(1)求x0的值;
(2)求過點M且與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦點的橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.下列方程在區間(-1,1)內存在實數解的是(  )
A.x2+x-3=0B.ex-x-1=0C.x-3+ln(x+1)=0D.x2-lgx=0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.函數f(x)=ln(2x2+2)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點P(2,c)處有相同的切線(P為切點),求a,b的值;
(2)令h(x)=f(x)+g(x),若函數h(x)的單調遞減區間為[-$\frac{a}{2}$,-$\frac{\sqrt{b}}{3}$],求函數h(x)在區間(-∞,-1]上的最大值M(a)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.將函數y=cos x的圖象上所有的點向右平行移動$\frac{π}{10}$個單位長度,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),所得圖象的函數解析式是(  )
A.y=cos(2x-$\frac{π}{10}$)B.y=cos(2x-$\frac{π}{5}$)C.y=cos($\frac{1}{2}$x-$\frac{π}{10}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{20}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知曲線C:$\frac{x^2}{m}$+$\frac{y^2}{2-m}$=1(m≠0,m≠2),說明曲線C的形狀,若是橢圓或雙曲線,請說明焦點在哪個坐標軸上.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知cosα=-$\frac{1}{2}$,α∈(0°,180°),則α等于(  )
A.60°B.120°C.45°D.135°

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线播放国产一区二区三区 | 国产羞羞视频在线观看 | 欧美日韩一 | 久久综合中文字幕 | 成人福利视频 | 国产成人激情 | 麻豆一区| 国产精品久久久久久久久久久免费看 | 在线观看免费视频亚洲 | 日本一本在线 | 精品国产乱码久久久久久影片 | 激情小视频在线观看 | 亚洲综合国产激情另类一区 | 欧美精品一区二区三区在线 | 中文无码久久精品 | 成人教育av | 久久精品视频免费观看 | 久久精品久久久久久久久久久久久 | 婷婷成人免费视频 | 黄片毛片免费看 | 日本在线免费 | 日韩一区二区视频 | 国产欧美一区二区精品久久 | 欧美中文字幕在线观看 | 久久综合久久久 | 成人中文字幕在线 | 久久99国产精品久久99果冻传媒 | 在线久草| 中文字幕在线日韩 | 一级毛片免费在线 | 女女野外嗯啊高潮h百合扶她 | 日韩靠逼| 国产精品一区免费在线观看 | 国产成人精品视频在线观看 | 久久全国免费视频 | 国产成人欧美一区二区三区一色天 | 欧美精品一区在线发布 | 黄91视频| 久久国产麻豆 | 国产精品欧美日韩在线观看 | 三级色黄|