日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知數列{xn},{yn}滿足x1=x2=1,y1=y2=2,并且
xn+1
xn
xn
xn-1
yn+1
yn
≥λ
yn
yn-1
(λ為非零參數,n=2,3,4,…).
(1)若x1,x3,x5成等比數列,求參數λ的值;
(2)當λ>0時,證明
xn+1
yn+1
xn
yn
(n∈N*)
;當λ>1時,證明
x1-y1
x2-y2
+
x2-y2
x3-y3
+…+
xn-yn
xn+1-yn+1
λ
λ-1
(n∈N*)
(1)由已知x1=x2=1,且
x3
x2
x2
x1

∴x3=λ,同理可知x43,x56,若x1、x3、x5成等比數列,則x32=x1x5,即λ26.而λ≠0,解得λ=±1.
(2)證明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性質,有
yn+1
yn
≥λ
yn
yn-1
λ 2
yn-1
yn-2
…≥
λ n-1
y2
y1
n-1
另一方面,
xn+1
xn
xn
xn-1
=λ 2
xn-1
xn-2
λ n-1
x2
x1
n-1
因此,
yn+1
yn
≥λ n-1
=
xn+1
xn
(n∈N*).故
xn+1
yn+1
xn
yn
(n∈N*).
(Ⅱ)當λ>1時,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)
xn+1
yn+1
xn
yn
(n∈N*),則
yn+1-xn+1
xn+1
yn-xn
xn

從而
yn+1-xn+1
yn-xn
xn+1
xn
(n∈N*).
x1-y1
x2-y2
+
x2-y2
x3-y3
+…+
xn-yn
xn+1-yn+1
=
1-(
1
λ
)
2
1-
1
λ
λ
λ-1
(n∈N*)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{xn}滿足x2=
x1
2
,xn=
1
2
(xn-1+xn-2),n=3,4,….若
lim
n→∞
xn
=2,則x1=(  )
A、
3
2
B、3
C、4
D、5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{xn}滿足x2=
1
2
x1,xn=
1
2
(xn-1+xn-2)(n=3,4,5,…),若
lim
n→∞
xn=2
,則x1=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

高斯函數[x]表示不超過x的最大整數,如[-2]=-2,[
2
]=1,已知數列{xn}中,x1=1,xn=xn-1+1+3{[
n-1
5
]-[
n-2
5
]}(n≥2),則x2013=
3219
3219

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區一模)在數列{an}中,若存在一個確定的正整數T,對任意n∈N*滿足an+T=an,則稱{an}是周期數列,T叫做它的周期.已知數列{xn}滿足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,當數列{xn}的周期為3時,則{xn}的前2013項的和S2013=
1342
1342

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•廣州一模)已知數列{xn}滿足下列條件:x1=a,x2=b,xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),其中a、b為常數,且a<b,λ為非零常數.
(Ⅰ)當λ>0時,證明:xn+1>xn(n∈N*);
(Ⅱ)當|λ|<1時,求
limn→∞
xn

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲成人av在线播放 | 成人在线免费视频 | 91蜜桃视频 | 美女91 | 成人av免费在线 | 天天干天天操 | 91在线免费视频 | 国产一区二区观看 | 国产在线视频一区二区 | 亚洲视频一| 91社区影院 | 日韩一区二区三区在线视频 | 99国产精品99久久久久久 | 免费看片91 | 中文字幕乱码一区二区三区 | 97超碰在线播放 | 黄色片毛片 | 另类视频在线 | 中文字幕一区二区三区四区 | 青草精品 | 欧美二区在线 | 四虎最新地址 | 国产精品欧美综合 | 日韩av电影在线播放 | 国产一区二区视频精品 | 免费精品 | 国产日韩一区二区 | 黄色99 | 精品亚洲一区二区三区 | 99久久免费精品国产男女性高好 | 欧美成人影院在线 | 久久综合九色综合欧美狠狠 | 色综合久久天天综合网 | 国产三区在线观看视频 | 国产一区二区三区久久久 | 99成人精品| 黄色av网站在线观看 | 亚洲综合无码一区二区 | 欧美日韩久久久久 | 亚洲二区在线观看 | 国产偷国产偷精品高清尤物 |