【題目】如圖,四棱錐中,
垂直平面
,
,
,
,
為
的中點.
(Ⅰ) 證明:平面平面
;
(Ⅱ)求直線與平面
所成角的正弦值.
【答案】(Ⅰ)見證明 (Ⅱ)
【解析】
(Ⅰ)可證 平面
,從而得到平面
平面
.
(Ⅱ)在平面內過
作
的垂線,垂足為
,由(1)可知
平面
,從而
就是所求的線面角,利用解直角三角形可得其正弦值.
(Ⅰ)證明: 平面
,
平面
, 故
.
又,所以
. 故
,即
,而
,所以
平面
,
因為平面
,所以平面
平面
.
(Ⅱ)平面
,
平面
, 故
.又
,所以
.
在平面內,過點
作
,垂足為
.
由(Ⅰ)知平面平面
,
平面
,平面
平面
所以
平面
.
由面積法得:即.
又點為
的中點,
.所以
.
又點為
的中點,所以點
到平面
的距離與點
到平面
的距離相等.
連結交
于點
,則
.
所以點到平面
的距離是點
到平面
的距離的一半,即
.
所以直線與平面
所成角的正弦值為
.
另解:如圖,取的中點
,如圖建立坐標系.
因為,所以
.所以有:
,
,
,
,
,
.
.
,
.
設平面的一個法量為
,則
取,得
,
.即
.
設直線與平面
所成角為
,則
.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程:
已知極坐標系的極點在直角坐標系的原點,極軸與x軸非負半軸重合,直線l的參數方程為:(t為參數,a∈[0,π),曲線C的極坐標方程為:p=2cosθ.
(Ⅰ)寫出曲線C在直角坐標系下的標準方程;
(Ⅱ)設直線l與曲線C相交PQ兩點,若|PQ|,求直線l的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(t為參數),直線
的參數方程為
(
為參數).設
與
的交點為
,當
變化時,
的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設
,
為
與
的交點,求
的極徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C:上,過M作x軸的垂線,垂足為N,點P滿足
.
(1)求點P的軌跡方程;
(2)設點Q在直線上,且
。證明:過點P且垂直于OQ的直線l過C的左焦點F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖像相鄰兩條對稱軸間的距離為
,且
,則以下命題中為假命題的是( )
A.函數在
上是增函數.
B.函數圖像關于點
對稱
C.函數的圖象可由
的圖象向左平移
個單位長度得到
D.函數的圖象關于直線
對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,側面B1BCC1是正方形,M,N分別是A1B1,AC的中點,AB⊥平面BCM.
(Ⅰ)求證:平面B1BCC1⊥平面A1ABB1;
(Ⅱ)求證:A1N∥平面BCM;
(Ⅲ)若三棱柱ABC-A1B1C1的體積為10,求棱錐C1-BB1M的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com