【題目】如圖,在三棱柱ABC-A1B1C1中,側面B1BCC1是正方形,M,N分別是A1B1,AC的中點,AB⊥平面BCM.
(Ⅰ)求證:平面B1BCC1⊥平面A1ABB1;
(Ⅱ)求證:A1N∥平面BCM;
(Ⅲ)若三棱柱ABC-A1B1C1的體積為10,求棱錐C1-BB1M的體積.
【答案】(Ⅰ)詳見解析(Ⅱ)詳見解析(Ⅲ)
【解析】
(Ⅰ)推導出AB⊥BC,BB1⊥BC,從而BC⊥平面A1ABB1,由此能證明平面B1BCC1⊥平面A1ABB1.
(Ⅱ)設BC中點為Q,連結NQ,MQ,推導出四邊形A1MQN是平行四邊形,從而A1N∥MQ,由此能證明A1N∥平面BCM.
(Ⅲ)連結A1B,根據棱柱和棱錐的體積公式,三棱錐B﹣A1B1C1的體積,棱錐C1﹣BB1M的體積
,由此能求出結果.
證明:(Ⅰ)∵AB⊥平面BCM,BC平面BCM,∴AB⊥BC,
∵正方形B1BCC1,∴BB1⊥BC,
∵AB∩BB1=B,∴BC⊥平面A1ABB1,
∵BC平面B1BCC1,∴平面B1BCC1⊥平面A1ABB1;
(Ⅱ)設BC中點為Q,連結NQ,MQ,
∵M,N分別是A1B1,AC的中點,∴NQ∥AB,且NQ=AB,
∵AB∥A1B1,且AB=A1B1,∴NQ∥A1M,且NQ=A1M,
∴四邊形A1MQN是平行四邊形,∴A1N∥MQ,
∵MQ平面BCM,A1N
∴A1N∥平面BCM.
(Ⅲ)連結A1B,根據棱柱和棱錐的體積公式,
得到三棱錐B-A1B1C1的體積=
=
,
∵M為A1B1的中點,
∴棱錐C1-BB1M的體積=
=
=
.
科目:高中數學 來源: 題型:
【題目】改革開放以來,人們的支付方式發生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數;
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用B的學生中隨機抽查1人,發現他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大提出對農村要堅持精準扶貧,至 2020 年底全面脫貧. 現有扶貧工作組到某山區貧困村實施脫貧工作. 經摸底排查,該村現有貧困農戶 100 家,他們均從事水果種植, 2017 年底該村平均每戶年純收入為 1 萬元,扶貧工作組一方面請有關專家對水果進行品種改良,提高產量;另一方面,抽出部分農戶從事水果包裝、銷售工作,其人數必須小于種植的人數. 從 2018 年初開始,若該村抽出 5x 戶( x ∈Z,1 ≤x ≤ 9) 從事水果包裝、銷售.經測算,剩下從事水果種植農戶的年純收入每戶平均比上一年提高,而從事包裝銷售農戶的年純收入每戶平均為 (3-
x) 萬元(參考數據: 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).
(1) 至 2020 年底,為使從事水果種植農戶能實現脫貧(每戶年均純收入不低于 1 萬 6 千元),至少抽出多少戶從事包裝、銷售工作?
(2) 至 2018 年底,該村每戶年均純收人能否達到 1.35 萬元?若能,請求出從事包裝、銷售的戶數;若不能,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖像相鄰兩條對稱軸間的距離為
,且
,則以下命題中為假命題的是( )
A.函數在
上是增函數.
B.函數圖像關于點
對稱
C.函數的圖象可由
的圖象向左平移
個單位長度得到
D.函數的圖象關于直線
對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校課題組為了研究學生的數學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數學成績及格的50名學生中有40人比較細心,另外10人比較粗心;在數學成績不及格的50名學生中有20人比較細心,另外30人比較粗心.
(1)試根據上述數據完成列聯表:
數學成績及格 | 數學成績不及格 | 合計 | |
比較細心 | 40 | ||
比較粗心 | |||
合計 | 50 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數學成績與細心程度有關系?
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某公園內有兩條道路,
,現計劃在
上選擇一點
,新建道路
,并把
所在的區域改造成綠化區域.已知
,
.
(1)若綠化區域的面積為1
,求道路
的長度;
(2)若綠化區域改造成本為10萬元/
,新建道路
成本為10萬元/
.設
(
),當
為何值時,該計劃所需總費用最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點與橢圓
的一個焦點重合,橢圓
的左、右頂點分別為
,
是橢圓
上一點,記直線
的斜率為
、
,且有
.
(1)求橢圓的方程;
(2)若過點的直線
與橢圓相交于不同兩點
和
,且滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長途車站P與地鐵站O的距離為千米,從地鐵站O出發有兩條道路l1,l2,經測量,l1,l2的夾角為45°,OP與l1的夾角
滿足tan
=
(其中0<θ<
),現要經過P修條直路分別與道路l1,l2交匯于A,B兩點,并在A,B處設立公共自行車停放點.
(1)已知修建道路PA,PB的單位造價分別為2m元/千米和m元/千米,若兩段道路的總造價相等,求此時點A,B之間的距離;
(2)考慮環境因素,需要對OA,OB段道路進行翻修,OA,OB段的翻修單價分別為n元/千米和n元/千米,要使兩段道路的翻修總價最少,試確定A,B點的位置.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com