【題目】已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函數,且f(1).
(1)求f(x)的解析式;
(2)若關于x的方程f(1)+f(1﹣3mx﹣2)=0在區間[0,1]內只有一個解,求m取值集合;
(3)是否存在正整數n,使不得式f(2x)≥(n﹣1)f(x)對一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,說明理由
【答案】(1)f(x)=3x﹣3﹣x(2)(﹣∞,2]∪{4}(3)存在正整數n,使不得式f(2x)≥(n﹣1)f(x)對一切x∈[﹣1,1]均成立,且n的值為1,2,3
【解析】
(1)利用奇函數的性質及f(1)列出方程組,解方程組即可得到函數解析式;
(2)結合函數單調性和函數的奇偶性脫去符號,轉化為二次函數的零點分布求解;
(3)分離得,由
,得到
的范圍,由此得出結論.
的范圍
(1)由題意,,解得
,
∴f(x)=3x﹣3﹣x;
(2)由指數函數的性質可知,函數f(x)=3x﹣3﹣x為R上的增函數,故方程f(91)+f(1﹣3mx﹣2)=0即為
,即
故g(x)=2mx2﹣(4+m)x+2=0在區間[0,1]內只有一個解,
①當m=0時,,符合題意;
②當m≠0時,由g(0)=2>0,故只需g(1)=2m﹣4﹣m+2≤0,則m≤2且m≠0;
③當△=(4+m)2﹣16m=0時,m=4,此時,符合題意;
綜上,實數m的取值范圍為(﹣∞,2]∪{4};
(3)f(2x)≥(n﹣1)f(x)即為,
∵3x+3﹣x≥2,當且即當“x=0”時取等號,
∴n﹣1≤2,即n≤3,
∴存在正整數n,使不得式f(2x)≥(n﹣1)f(x)對一切x∈[﹣1,1]均成立,且n的值為1,2,3.
科目:高中數學 來源: 題型:
【題目】(1)已知函數,試判斷函數
的單調性,并說明理由;
(2)已知函數.
(i)判斷的奇偶性,并說明理由;
(ii)求證:對于任意的x ,y∈R,且x≠±1 ,y≠±1,xy≠1都有①.
(3)由⑵可知滿足①式的函數是存在的,如.問:滿足①的函數是否存在無窮多個?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發現年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統計量的值.
(1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產品的年利潤z與x,y的關系為,根據(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若在區間
上不單調,求
的取值范圍;
(2)設,若函數
在區間
恒有意義,求實數
的取值范圍;
(3)已知方程在
有兩個不相等的實數根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,且
).
(Ⅰ)求函數的單調區間;
(Ⅱ)求函數在
上的最大值.
【答案】(Ⅰ)的單調增區間為
,單調減區間為
.(Ⅱ)當
時,
;當
時,
.
【解析】【試題分析】(I)利用的二階導數來研究求得函數
的單調區間.(II) 由(Ⅰ)得
在
上單調遞減,在
上單調遞增,由此可知
.利用導數和對
分類討論求得函數在
不同取值時的最大值.
【試題解析】
(Ⅰ),
設
,則
.
∵,
,∴
在
上單調遞增,
從而得在
上單調遞增,又∵
,
∴當時,
,當
時,
,
因此, 的單調增區間為
,單調減區間為
.
(Ⅱ)由(Ⅰ)得在
上單調遞減,在
上單調遞增,
由此可知.
∵,
,
∴.
設,
則
.
∵當時,
,∴
在
上單調遞增.
又∵,∴當
時,
;當
時,
.
①當時,
,即
,這時,
;
②當時,
,即
,這時,
.
綜上, 在
上的最大值為:當
時,
;
當時,
.
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓 的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線 與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com