【題目】已知橢圓:
的離心率為
,過橢圓
右焦點
的直線
與橢圓
交于點
(點
在第一象限).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知為橢圓
的左頂點,平行于
的直線
與橢圓相交于
兩點.判斷直線
是否關于直線
對稱,并說明理由.
【答案】(1);(2)對稱.
【解析】
試題(Ⅰ)由已知條件推導出c=1,,由此能求出橢圓的方程.
(Ⅱ)由已知條件得A(-2,0),M(1,),設直線l:
,n≠1.設B(x1,y1),C(x2,y2),由
,得x2+nx+n2﹣3=0.再由根的判別式和韋達定理結合已知條件能求出直線MB,MC關于直線m對稱.
試題解析:
(Ⅰ)由題意得c=1,
由=
可得a=2,
所以b2=a2-c2=3,
所以橢圓的方程為+
=1.
(Ⅱ)由題意可得點A(-2,0),M(1,),
所以由題意可設直線l:y=x+n,n≠1.
設B(x1,y1),C(x2,y2),
由得x2+nx+n2-3=0.
由題意可得Δ=n2-4(n2-3)=12-3n2>0,即n∈(-2,2)且n≠1.
x1+x2=-n,x1x2=n2-3
因為kMB+kMC=+
=+
=1++
=1+
=1-=0,
所以直線MB,MC關于直線m對稱.
科目:高中數學 來源: 題型:
【題目】設橢圓,定義橢圓C的“相關圓”E為:
.若拋物線
的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關圓”E的方程;
(2)過“相關圓”E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:
為定值(
為坐標原點);
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為
,經過點
的直線與橢圓相交于
,
兩點,點
為線段
的中點,點
為坐標原點.當直線
的斜率為
時,直線
的斜率為
.
(1)求橢圓的標準方程;
(2)若點為橢圓的左頂點,點
為橢圓的右頂點,過
的動直線交該橢圓于
,
兩點,記
的面積為
,
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC
,則三棱錐P﹣ABC外接球的表面積為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,且經過點
,它的一個焦點與拋物線E:
的焦點重合,斜率為k的直線l交拋物線E于A、B兩點,交橢圓
于C、D兩點.
(1)求橢圓的方程;
(2)直線l經過點,設點
,且
的面積為
,求k的值;
(3)若直線l過點,設直線
,
的斜率分別為
,
,且
,
,
成等差數列,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標系中,角
的頂點是原點,始邊與
軸正半軸重合.終邊交單位圓于點
,且
,將角
的終邊按逆時針方向旋轉
,交單位圓于點
,記
.
(1)若,求
;
(2)分別過作
軸的垂線,垂足依次為
,記
的面積為
,
的面積為
,若
,求角
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com