【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC
,則三棱錐P﹣ABC外接球的表面積為______.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點,且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在斜三棱柱ABC-A1B1C1中,側面AA1C1C是菱形,AC1與A1C交于點O,點E是AB的中點.
(1)求證:OE∥平面BCC1B1.
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若關系式
中變量
是變量
的函數,則稱函數
為可變換函數.例如:對于函數
,若
,則
,所以變量
是變量
的函數,所以
是可變換函數.
(1)求證:反比例函數不是可變換函數;
(2)試判斷函數是否是可變換函數并說明理由;
(3)若函數為可變換函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)若為偶函數,求
的值并寫出
的增區間;
(Ⅱ)若關于的不等式
的解集為
,當
時,求
的最小值;
(Ⅲ)對任意的,
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣
=0交M于A,B兩點,P為AB的中點,且OP的斜率為
.
(1)求M的方程
(2)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com