A. | -586 | B. | -588 | C. | -590 | D. | -504 |
分析 a1=2,${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$⇒${a}_{2}=\frac{{a}_{1}-1}{{a}_{1}+1}=\frac{1}{3}$,${a}_{3}=\frac{{a}_{2}-1}{{a}_{2}+1}=-\frac{1}{2}$,${a}_{4}=\frac{{a}_{3}-1}{{a}_{3}+1}=-3$,${a}_{5}=\frac{{a}_{4}-1}{{a}_{4}+1}=2$…可得數列{an}是周期為4的周期數列,即可求解.
解答 解:∵a1=2,${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,∴${a}_{2}=\frac{{a}_{1}-1}{{a}_{1}+1}=\frac{1}{3}$,${a}_{3}=\frac{{a}_{2}-1}{{a}_{2}+1}=-\frac{1}{2}$,${a}_{4}=\frac{{a}_{3}-1}{{a}_{3}+1}=-3$,
${a}_{5}=\frac{{a}_{4}-1}{{a}_{4}+1}=2$…可得數列{an}是周期為4的周期數列.
S2017=$504×(2+\frac{1}{3}-\frac{1}{2}-3)+2=-586$,
故選:A.
點評 本題考查了數列的遞推式,考查了歸納推理能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 4 | C. | $\sqrt{17}$ | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com