分析 (1)由已知利用兩角差的正切函數公式,特殊角的三角函數值即可計算得解.
(2)由tanα=$\frac{1}{2}$,利用同角三角函數基本關系式,二倍角的余弦函數公式即可計算得解.
解答 解:(1)∵tan(α-$\frac{π}{4}$)=$\frac{tanα-1}{1+tanα}$=-$\frac{1}{3}$.
∴解得:tanα=$\frac{1}{2}$.
(2)∵tanα=$\frac{1}{2}$,
∴cos2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{3}{5}$.
點評 本題主要考查了兩角差的正切函數公式,特殊角的三角函數值,同角三角函數基本關系式,二倍角的余弦函數公式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x>$\frac{1}{2}$} | B. | {x|x<$\frac{1}{4}$} | C. | {x|$\frac{1}{4}$<x<$\frac{1}{2}$} | D. | {x|x>$\frac{1}{2}$或x<$\frac{1}{4}$} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
ξ | 1 | 2 | 3 |
p | p1 | p2 | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{12}{13}$,$\frac{5}{13}$) | B. | (-$\frac{12}{13}$,-$\frac{5}{13}$) | ||
C. | ($-\frac{5}{13}$,$\frac{12}{13}$)或($\frac{5}{13}$,-$\frac{12}{13}$) | D. | (±$\frac{12}{13}$,$\frac{5}{13}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com