【題目】一種擲骰子走跳棋的游戲:棋盤上標有第0站、第1站、第2站、…、第100站,共101站,設棋子跳到第n站的概率為,一枚棋子開始在第0站,棋手每擲一次骰子,棋子向前跳動一次.若擲出奇數點,棋子向前跳一站;若擲出偶數點,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或第100站(失敗)時,游戲結束(骰子是用一種均勻材料做成的立方體形狀的游戲玩具,它的六個面分別標有點數1,2,3,4,5,6).
(1)求,
,
,并根據棋子跳到第n站的情況,試用
和
表示
;
(2)求證:為等比數列;
(3)求玩該游戲獲勝的概率.
【答案】(1),
,
,
;(2)證明見解析;(3)
.
【解析】
(1) 在第0站是必然事件,所以.棋子跳到第1站,只有一種情形,第一次擲骰子出現奇數點,可求出
,棋子跳到第2站,包括兩種情形,①第一次擲骰子岀現偶數點,②前兩次擲骰子出現奇數點,可求出
.棋子跳到第
站,包括兩種情形,①棋子先跳到第
站,又擲骰子出現偶數點, ②棋子先跳到第
站,又擲骰子出現奇數點,進行求解.
(2) 由(1)知,,所以
可證.
(3) 該游戲獲勝的概率,即求,由(2)用累加法可求解.
(1)棋子開始在第0站是必然事件,所以.
棋子跳到第1站,只有一種情形,第一次擲骰子出現奇數點,其概率為,所以
.
棋子跳到第2站,包括兩種情形,①第一次擲骰子岀現偶數點,其概率為;②前兩次擲骰子出現奇數點,其概率為
,所以
.
棋子跳到第站,包括兩種情形,①棋子先跳到第
站,又擲骰子出現偶數點,其概率為
;②棋子先跳到第
站,又擲骰子出現奇數點,其概率為
.
故.
(2)由(1)知,,所以
.
又因為,
所以是首項為
,公比為
的等比數列.
(3)由(2)知,.
所以
.
所以玩該游戲獲勝的概率為.
科目:高中數學 來源: 題型:
【題目】已知某地區某種昆蟲產卵數和溫度有關.現收集了一只該品種昆蟲的產卵數(個)和溫度
(
)的7組觀測數據,其散點圖如所示:
根據散點圖,結合函數知識,可以發現產卵數和溫度
可用方程
來擬合,令
,結合樣本數據可知
與溫度
可用線性回歸方程來擬合.根據收集到的數據,計算得到如下值:
27 | 74 | 182 |
表中,
.
(1)求和溫度
的回歸方程(回歸系數結果精確到
);
(2)求產卵數關于溫度
的回歸方程;若該地區一段時間內的氣溫在
之間(包括
與
),估計該品種一只昆蟲的產卵數的范圍.(參考數據:
,
,
,
,
.)
附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
為
的中點,將
沿直線
翻折成
,連結
,
為
的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當三棱錐
的體積最大時,三棱錐
的外接球的表面積是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
分別為雙曲線
的左、右焦點,點P是以
為直徑的圓與C在第一象限內的交點,若線段
的中點Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將四個面都為直角三角形的四面體稱為鱉臑.如圖,四棱錐中,底面
為平行四邊形,
,
,
底面
.
(1)求證:平面
.試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(2)若,求點A到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“移動支付、高鐵、網購、共享單車”被稱為中國的“新四大發明”.為了幫助50歲以上的中老年人更快地適應“移動支付”,某機構通過網絡組織50歲以上的中老年人學習移動支付相關知識.學習結束后,每人都進行限時答卷,得分都在內.在這些答卷(有大量答卷)中,隨機抽出
份,統計得分繪出頻率分布直方圖如圖.
(1)求出圖中的值,并求樣本中,答卷成績在
上的人數;
(2)以樣本的頻率為概率,從參加這次答卷的人群中,隨機抽取名,記成績在
分以上(含
分)的人數為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,函數
,
,其中
為常數,且
,令函數
為函數
和
的積函數.
(1)求函數的表達式,并求其定義域;
(2)當時,求函數
的值域
(3)是否存在自然數,使得函數
的值域恰好為
?若存在,試寫出所有滿足條件的自然數
所構成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著科學技術的飛速發展,網絡也已經逐漸融入了人們的日常生活,網購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優勢而深受廣大消費者認可.某網購公司統計了近五年在本公司網購的人數,得到如下的相關數據(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據表中的數據,求出y關于x的線性回歸方程,并預測到哪一年該公司的網購人數能超過300萬人;
(2)該公司為了吸引網購者,特別推出“玩網絡游戲,送免費購物券”活動,網購者可根據拋擲骰子的結果,操控微型遙控車在方格圖上行進. 若遙控車最終停在“勝利大本營”,則網購者可獲得免費購物券500元;若遙控車最終停在“失敗大本營”,則網購者可獲得免費購物券200元. 已知骰子出現奇數與偶數的概率都是,方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數,遙控車向前移動一格(從
到
)若擲出偶數遙控車向前移動兩格(從
到
),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第
格的概率為
,試證明
是等比數列,并求網購者參與游戲一次獲得免費購物券金額的期望值.
附:在線性回歸方程中,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com