【題目】已知圓經(jīng)過點
,和直線
相切,且圓心在直線
上,
(1)求圓的方程
(2)已知直線經(jīng)過原點,并且被圓
截得的弦長為2,求直線
的方程.
【答案】(1)(2)
或
【解析】
(1)設(shè)出圓心的坐標(biāo)為,利用兩點間的距離公式表示出圓心到A的距離即為圓的半徑,且根據(jù)圓與直線
相切,根據(jù)圓心到直線的距離等于圓的半徑列出關(guān)于a的方程,求出方程的解得到a的值,確定出圓心坐標(biāo),進(jìn)而求出圓的半徑,根據(jù)圓心和半徑寫出圓的標(biāo)準(zhǔn)方程即可;
(2)分類討論,分為斜率存在和不存在兩種情形,利用被圓C截得的弦長為2,結(jié)合垂徑定理求出直線的斜率,即可求直線l的方程.
(1)設(shè)圓心的坐標(biāo)為
則
化簡得解得
∴,半徑
所以圓的方程為
(2)①當(dāng)直線的斜率不存在時,直線
的方程為
,
此時直線被圓
截得的弦長為2,滿足條件.
②當(dāng)直線的斜率存在時,設(shè)直線
的方程為
,
由題意得解得
∴直線的方程為
,即
綜上所述直線的方程為
或
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為
(
為參數(shù)),
,
為曲線
上的一動點.
(I)求動點對應(yīng)的參數(shù)從
變動到
時,線段
所掃過的圖形面積;
(Ⅱ)若直線與曲線
的另一個交點為
,是否存在點
,使得
為線段
的中點?若存在,求出點
坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點為
,點
在橢圓
上.
(1)設(shè)點到直線
的距離為
,證明:
為定值;
(2)若是橢圓
上的兩個動點(都不與
重合),直線
的斜率互為相反數(shù),求直線
的斜率(結(jié)果用
表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓與雙曲線的公共焦點,
是它們的一個公共點,且
,橢圓的離心率為
,雙曲線的離心率為
,若
,則
的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
,其焦點到準(zhǔn)線的距離為2,直線
與拋物線
交于
,
兩點,過
,
分別作拋物線
的切線
,
,
與
交于點
.
(Ⅰ)求的值;
(Ⅱ)若,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個圓經(jīng)過點,且和直線
相切.
(1)求動圓圓心的軌跡的方程;
(2)已知點,設(shè)不垂直于
軸的直線
與軌跡
交于不同的兩點
,若
軸是
的角平分線,證明直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為調(diào)研學(xué)校師生的環(huán)境保護(hù)意識,決定在本市所有學(xué)校中隨機(jī)抽取60所進(jìn)行環(huán)境綜合考評成績達(dá)到80分以上(含80分)為達(dá)標(biāo).60所學(xué)校的考評結(jié)果頻率分布直方圖如圖所示(其分組區(qū)間為[50,60),[60,70),[70,80),[80,90),[90,100]).
(Ⅰ)試根據(jù)樣本估汁全市學(xué)校環(huán)境綜合考評的達(dá)標(biāo)率;
(Ⅱ)若考評成績在[90.100]內(nèi)為優(yōu)秀.且甲乙兩所學(xué)校考評結(jié)果均為優(yōu)秀從考評結(jié)果為優(yōu)秀的學(xué)校中隨機(jī)地抽取兩所學(xué)校作經(jīng)驗交流報告,求甲乙兩所學(xué)校至少有一所被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com