分析 作出不等式組對應的平面區域,利用目標函數的幾何意義,根據z=2x+y的最大值為6,即可求出k的值.
解答 解:作出不等式組對應的平面區域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經過點A時,直線y=-2x+z的截距最大,
此時z最大為6.
由$\left\{\begin{array}{l}{x=k}\\{x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=k}\\{y=k+3}\end{array}\right.$,即A(k,k+3),
此時2k+k+3=6,
即3k=3,則k=1,
故答案為:1.
點評 本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(0,\frac{{\sqrt{10}}}{3}]$ | B. | $(\frac{{\sqrt{10}}}{3},\frac{{\sqrt{17}}}{3}]$ | C. | $(\frac{{\sqrt{10}}}{3},\sqrt{2}]$ | D. | $(\frac{{\sqrt{17}}}{3},\sqrt{2}]$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com