【題目】某城市交通部門為了對該城市共享單車加強監管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照,
,
,
,
分成5組,制成如圖所示頻率分直方圖.
(1)求圖中的值及這組數據的眾數;
(2)已知滿意度評分值在內的男生數與女生數的比為
,若在滿意度評分值為
的人中隨機抽取2人進行座談,求2人均為男生的概率.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓
:
,設
是橢圓
上任一點,從原點
向圓
:
作兩條切線,分別交橢圓于點
,
.
(1)若直線,
互相垂直,且圓心落在第一象限,求圓
的圓心坐標;
(2)若直線,
的斜率都存在,并記為
,
.
①求證:;
②試問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點
與拋物線
的焦點重合,且橢圓的離心率為
.
(1)求橢圓的標準方程;
(2)過橢圓右焦點
的直線
與橢圓交于兩點
、
,在
軸上是否存在點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次體育興趣小組的聚會中,要安排6人的座位,使他們在如圖所示的6個椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛好.現已知這6人的體育興趣愛好如下表所示,且小林坐在1號位置上,則4號位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛好 | 籃球,網球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,制作工藝十分復雜,而且優質品檢驗異常嚴格,檢驗方案是:先從燒制的這批唐三彩中任取 3件作檢驗,這3件唐三彩中優質品的件數記為.如果
,再從這批唐三彩中任取3件作檢驗,若都為優質品,則這批唐三彩通過檢驗;如果
,再從這批唐三彩中任取1件作檢驗,若為優質品,則這批唐三彩通過檢驗;其他情況下,這批唐三彩都不能通過檢驗.假設這批唐三彩的優質品概率為
,即取出的每件唐三彩是優質品的概率都為
,且各件唐三彩是否為優質品相互獨立.
(1)求這批唐三彩通過優質品檢驗的概率;
(2)已知每件唐三彩的檢驗費用為100元,且抽取的每件唐三彩都需要檢驗,對這批唐三彩作質量檢驗所需的總費用記為元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}的前n項和為Sn,公比q>0,S2=2a2-2,S3=a4-2,數列{an}滿足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求數列{an}的通項公式;
(2)證明數列{}為等差數列;
(3)設數列{cn}的通項公式為:Cn=,其前n項和為Tn,求T2n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】光伏發電是利用太陽能電池及相關設備將太陽光能直接轉化為電能.近幾年在國內出臺的光伏發電補貼政策的引導下,某地光伏發電裝機量急劇上漲,如下表:
某位同學分別用兩種模型:①②
進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于
):
經過計算得,
.
(1)根據殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.
(2)根據(1)的判斷結果及表中數據建立y關于x的回歸方程,并預測該地區2020年新增光伏裝機量是多少.(在計算回歸系數時精確到0.01)
附:歸直線的斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點,過點
作直線
、
與圓
:
和拋物線
:
都相切.
(1)求拋物線的兩切線的方程;
(2)設拋物線的焦點為,過點
的直線與拋物線相交于
、
兩點,與拋物線的準線交于點
(其中點
靠近點
),且
,求
與
的面積之比.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com