【題目】為了解使用手機(jī)是否對(duì)學(xué)生的學(xué)習(xí)有影響,某校隨機(jī)抽取100名學(xué)生,對(duì)學(xué)習(xí)成績和使用手機(jī)情況進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):
使用手機(jī) | 不使用手機(jī) | 總計(jì) | |
學(xué)習(xí)成績優(yōu)秀 | 10 | 40 | |
學(xué)習(xí)成績一般 | 30 | ||
總計(jì) | 100 |
(Ⅰ)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與使用手機(jī)有關(guān);
(Ⅱ)現(xiàn)從上表不使用手機(jī)的學(xué)生中按學(xué)習(xí)成績是否優(yōu)秀分層抽樣選出6人,再從這6人中隨機(jī)抽取3人,記這3人中“學(xué)習(xí)成績優(yōu)秀”的人數(shù)為,試求
的分布列與數(shù)學(xué)期望.
參考公式:,其中
.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(Ⅰ)見解析;(Ⅱ)見解析.
【解析】
(Ⅰ)根據(jù)題意即可將列聯(lián)表完成,通過計(jì)算的值即可得最后結(jié)論;(Ⅱ)“學(xué)習(xí)成績優(yōu)秀”的有4人,“學(xué)習(xí)成績一般”的有2人,
的所有可能取值為1,2,3,計(jì)算出其概率得到分布列,計(jì)算出期望.
(Ⅰ)填表如下:
使用手機(jī) | 不使用手機(jī) | 總計(jì) | |
學(xué)習(xí)成績優(yōu)秀 | 10 | 40 | 50 |
學(xué)習(xí)成績一般 | 30 | 20 | 50 |
總計(jì) | 40 | 60 | 100 |
由上表得
.
故有的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與是否使用手機(jī)有關(guān).
(Ⅱ)由題意得,所抽取的6位不使用手機(jī)的學(xué)生中,
“學(xué)習(xí)成績優(yōu)秀”的有人,“學(xué)習(xí)成績一般”的有
人.
的所有可能取值為1,2,3.
,
,
.
所以的分布列為:
1 | 2 | 3 | |
故數(shù)學(xué)期望為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
,
.
(1)若在
上單調(diào)遞增,求正數(shù)
的最大值;
(2)若函數(shù)在
內(nèi)恰有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論的單調(diào)性;
(2)若對(duì)任意,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中側(cè)面
為等邊三角形且垂直于底面
,
,
,
,
是
的中點(diǎn).
(1)證明:直線平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑:一種是從A處沿直線步行到C處;另一種是先從A處沿索道乘纜車到B處,然后從B處沿直線步行到C處,現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m·min-1.在甲出發(fā)2 min后,乙從A處乘纜車到B處,在B處停留1 min后,再從B處勻速步行到C處假設(shè)纜車的速度為130 m·min-1,山路AC長為1260 m,經(jīng)測量,
.
(1)乙出發(fā)多長時(shí)間后,乙在纜車上與甲的距離最短?
(2)為使甲、乙在C處互相等待的時(shí)間不超過3 min,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)若直線l與圓相切,求
的值;
(2)若直線l與曲線(為參數(shù))交于A,B兩點(diǎn),點(diǎn)
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(2)當(dāng)時(shí),若關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)e為圓錐曲線的離心率,F(xiàn)為一個(gè)焦點(diǎn),l是焦點(diǎn)所在的對(duì)稱軸,O是l上距F較近的頂點(diǎn),又M、N是l上滿足
的兩點(diǎn)。求證:對(duì)曲線
的過點(diǎn)M的任一條弦AB(A、B為弦的端點(diǎn)),直線l平分NA和NB的一組夾角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com