【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D為PB中點,PC=3PE.
(1)求證:平面ADE⊥平面PBC;
(2)在AC上是否存在一點M,使得MB∥平面ADE?若存在,請確定點M的位置,并說明理由.
【答案】(1)證明見解析(2)存在,是
中點;證明見解析
【解析】
(1)根據(jù)已知可得,
,可證BC⊥平面PAB,進(jìn)而BC⊥AD,根據(jù)已知可得AD⊥PB,AD⊥平面PBC,即可證明結(jié)論;
(2)存在M是AC中點時,MB∥平面ADE,取EC中點F,連結(jié)BM,MF,可證
平面
,
平面
,進(jìn)而證明平面
平面
,即可證明結(jié)論.
(1)證明:∵PA⊥平面ABC,平面ABC,∴BC⊥PA,
平面PAB,
∴BC⊥平面PAB,平面PAB,∴BC⊥AD,
∵PA=AB,D為PB中點,∴AD⊥PB,
平面
,∴AD⊥平面PBC,
∵AD平面ADE,∴平面ADE⊥平面PBC.
(2)點M是AC中點時,MB∥平面ADE,證明如下:
取EC中點F,連結(jié)BM,MF,
因為分別為
的兩個三等分點,
在中,
平面
,
平面
平面
,
同理平面
,又
平面
,
平面平面
,
平面
,
平面
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準(zhǔn)線方程;
(II)是否存在平行于OA(O為坐標(biāo)原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求
的單調(diào)區(qū)間和極值;
(2)若直線是曲線
的切線,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的棱長均為2,O為AC的中點,平面A'OB⊥平面ABC,平面
⊥平面ABC.
(1)求證:A'O⊥平面ABC;
(2)求二面角A﹣BC﹣C'的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(1)若在
上存在極值點,求a的取值范圍;
(2)設(shè),
,若
存在最大值,記為
,則當(dāng)
時,
是否存在最大值?若存在,求出其最大值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線
的方程為
.以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求的直角坐標(biāo)方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F1到直線AB的距離為|OB|.
(1)求橢圓C的方程;
(2)如圖,若橢圓,橢圓
,則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M、N,試求弦長|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,若點A為函數(shù)
上的任意一點,點B為函數(shù)
上的任意一點.
(1)求A,B兩點之間距離的最小值;
(2)若A,B為函數(shù)與函數(shù)
公切線的兩個切點,求證:這樣的點B有且僅有兩個,且滿足條件的兩個點B的橫坐標(biāo)互為倒數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com