【題目】已知橢圓的離心率
,兩焦點分別為
,右頂點為
,
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設過定點的直線
與雙曲線
的左支有兩個交點,與橢圓
交于
兩點,與圓
交于
兩點,若
的面積為
,
,求正數
的值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析:(Ⅰ)由已知,可得,又∵
,即可得解.
(Ⅱ)由可得
,
結合直線
與雙曲線
的左支有兩個交點,∴必有
. ∴
.可得
.
試題解析:(Ⅰ)由已知,不妨設,
,
∴,即
,
又∵, ∴
,∴橢圓
的標準方程為
.
(Ⅱ)依題設,如圖,直線的斜率存在,設
,
,
由
得
,
即
,
,
∴,
點到直線
的距離為
,
∴,
整理得,解得
或
,
又由直線與圓相交,有
,解得
,
依題設,直線與雙曲線
的左支有兩個交點,∴必有
. ∴
.
此時,
,
∴正數.
點晴:本題主要考查直線與圓錐曲線位置關系. 直線和圓錐曲線的位置關系一方面要體現方程思想,另一方面要結合已知條件,從圖形角度求解.聯立直線與圓錐曲線的方程得到方程組,化為一元二次方程后由根與系數的關系求解是一個常用的方法. 涉及弦長的問題中,應熟練地利用根與系數關系、設而不求法計算弦長;涉及垂直關系時也往往利用根與系數關系、設而不求法簡化運算;涉及過焦點的弦的問題,可考慮用圓錐曲線的定義求解.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,已知點
,曲線
的參數方程為
.以原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)判斷點與直線
的位置關系并說明理由;
(Ⅱ)設直線與曲線
的兩個交點分別為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖像,如圖所示,請補出完整函數f(x)的圖像,并根據圖像寫出函數f(x)的增區間;
(2)寫出函數f(x)的解析式和值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log (x2﹣ax+b). (Ⅰ)若函數f(x)的定義域為(﹣∞,2)∪(3,+∞),求實數a,b的值;
(Ⅱ)若f(﹣2)=﹣3且f(x)在(﹣∞,﹣1]上為增函數,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x+2ax+b , 且f(1)= 、f(2)=
.
(1)求a、b的值;
(2)判斷f(x)的奇偶性并證明;
(3)先判斷并證明函數f(x)在[0,+∞)上的單調性,然后求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點
分別在邊
上,且
,
交
于點
.現將
沿
折起,使得平面
平面
,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點是線段
上的一動點,問點
在什么位置時,二面角
的余弦值為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四組函數,兩個函數相同的是( )
A.f(x)= ,g(x)=x
B.f(x)=log33x , g(x)=
C.f(x)=( )2 , g(x)=|x|
D.f(x)=x,g(x)=x0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為0-25(分貝),并規定測試值在區間
為非常優秀,測試值在區間
為優秀.某班50名同學都進行了聽力測試,所得測試值制成頻率分布直方圖:
(Ⅰ)現從聽力等級為的同學中任意抽取出4人,記聽力非常優秀的同學人數為
,求
的分布列與數學期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個更高級別的聽力測試,測試規則如下:四個音叉的發生情況不同,由強到弱的次序分別為1,2,3,4.測試前將音叉隨機排列,被測試的同學依次聽完后給四個音叉按發音的強弱標出一組序號,
,
,
(其中
,
,
,
為1,2,3,4的一個排列).若
為兩次排序偏離程度的一種描述,
,求
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com