【題目】已知是拋物線
的焦點(diǎn),點(diǎn)
在
軸上,
為坐標(biāo)原點(diǎn),且滿足
,經(jīng)過點(diǎn)
且垂直于
軸的直線與拋物線
交于
、
兩點(diǎn),且
.
(1)求拋物線的方程;
(2)直線與拋物線
交于
、
兩點(diǎn),若
,求點(diǎn)
到直線
的最大距離.
【答案】(1);(2)
.
【解析】
(1)求得點(diǎn)的坐標(biāo),可得出直線
的方程,與拋物線的方程聯(lián)立,結(jié)合
求出正實(shí)數(shù)
的值,進(jìn)而可得出拋物線的方程;
(2)設(shè)點(diǎn),
,設(shè)
的方程為
,將直線
的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合
求得
的值,可得出直線
所過定點(diǎn)的坐標(biāo),由此可得出點(diǎn)
到直線
的最大距離.
(1)易知點(diǎn),又
,所以點(diǎn)
,則直線
的方程為
.
聯(lián)立,解得
或
,所以
.
故拋物線的方程為
;
(2)設(shè)的方程為
,聯(lián)立
有
,
設(shè)點(diǎn),
,則
,所以
.
所以,解得
.
所以直線的方程為
,恒過點(diǎn)
.
又點(diǎn),故當(dāng)直線
與
軸垂直時(shí),點(diǎn)
到直線
的最大距離為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個(gè)頂點(diǎn)都在橢圓C:
上,且
過橢圓的左焦點(diǎn)F,O為坐標(biāo)原點(diǎn),M在
上,且
.
(1)求點(diǎn)M的軌跡方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求經(jīng)過橢圓右焦點(diǎn)
且與直線
垂直的直線的極坐標(biāo)方程;
(2)若為橢圓
上任意-點(diǎn),當(dāng)點(diǎn)
到直線
距離最小時(shí),求點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀發(fā)熱咳嗽氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎嚴(yán)重急性呼吸綜合征腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)n次.
方式二:混合檢驗(yàn),將其中且k≥2)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1.
假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p(0<p<1).現(xiàn)取其中且k≥2)份血液樣本,記采用逐份檢驗(yàn),方式,樣本需要檢驗(yàn)的總次數(shù)為
,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式p=f(k).
(2)若p與干擾素計(jì)量相關(guān),其中
2)是不同的正實(shí)數(shù),滿足x1=1且
.
(i)求證:數(shù)列為等比數(shù)列;
(ii)當(dāng)時(shí)采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:(
為參數(shù),已知直線
,直線
以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C以及直線,
的極坐標(biāo)方程;
(2)若直線與曲線C分別交于O、A兩點(diǎn),直線
與曲線C分別交于O、B兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了讓健身館會(huì)員參與的健身促銷活動(dòng).
(1)為了解會(huì)員對(duì)促銷活動(dòng)的興趣程度,現(xiàn)從某周六參加該健身館健身活動(dòng)的會(huì)員中隨機(jī)采訪男性會(huì)員和女性會(huì)員各人,他們對(duì)于此次健身館健身促銷活動(dòng)感興趣的程度如下表所示:
感興趣 | 無所謂 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
根據(jù)以上數(shù)據(jù)能否有的把握認(rèn)為“對(duì)健身促銷活動(dòng)感興趣”與“性別”有關(guān)?
(參考公式,其中
)
(2)在感興趣的會(huì)員中隨機(jī)抽取人對(duì)此次健身促銷活動(dòng)的滿意度進(jìn)行調(diào)查,以莖葉圖記錄了他們對(duì)此次健身促銷活動(dòng)滿意度的分?jǐn)?shù)(滿分
分),如圖所示,若將此莖葉圖中滿意度分為“很滿意”(分?jǐn)?shù)不低于
分)、“滿意”(分?jǐn)?shù)不低于平均分且低于
分)、“基本滿意”(分?jǐn)?shù)低于平均分)三個(gè)級(jí)別.先從“滿意”和“很滿意”的會(huì)員中隨機(jī)抽取兩人參加回訪饋贈(zèng)活動(dòng),求這兩人中至少有一人是“很滿意”會(huì)員的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)①求證:當(dāng)任意取值時(shí),
的圖像始終經(jīng)過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo);
②若的圖像在該定點(diǎn)處取得極值,求
的值;
(2)求證:當(dāng)時(shí),函數(shù)
有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若直線與曲線
交于
、
兩點(diǎn),設(shè)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研單位到某大學(xué)的光電信息科學(xué)工程專業(yè)招聘暑期實(shí)習(xí)生,該專業(yè)一班30名同學(xué)全部報(bào)名,該科研單位對(duì)每個(gè)學(xué)生的測(cè)試是光電實(shí)驗(yàn),這30名學(xué)生測(cè)試成績的莖葉圖如圖所示.
(1)求男同學(xué)測(cè)試成績的平均數(shù)及中位數(shù);
(2)從80分以上的女同學(xué)中任意選取3人,求恰有2人成績位于的概率;
(3)若80分及其以上定為優(yōu)秀,80分以下定為合格,作出該班男女同學(xué)成績“優(yōu)秀”、“合格”的列聯(lián)表,并判斷是否有90%的把握認(rèn)為該次測(cè)試是否優(yōu)秀與性別有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.01 | |
2.072 | 2.706 | 3.841 | 6.635 |
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com