【題目】如圖,四棱錐P-ABCD中,側面PAD是邊長為2的等邊三角形且垂直于底,
是
的中點。
(1)證明:直線平面
;
(2)點在棱
上,且直線
與底面
所成角為
,求二面角
的余弦值。
【答案】(1)見解析;(2)
【解析】試題分析:(1) 取的中點
,連結
,
,由題意證得
∥
,利用線面平行的判斷定理即可證得結論;(2)建立空間直角坐標系,求得半平面的法向量:
,
,然后利用空間向量的相關結論可求得二面角
的余弦值為
.
試題解析:(1)取中點
,連結
,
.
因為為
的中點,所以
,
,由
得
,又
所以.四邊形
為平行四邊形,
.
又,
,故
(2)
由已知得,以A為坐標原點,
的方向為x軸正方向,
為單位長,建立如圖所示的空間直角坐標系A-xyz,則
則,
,
,
,
,
則
因為BM與底面ABCD所成的角為45°,而是底面ABCD的法向量,所以
,
即(x-1)+y-z=0
又M在棱PC上,學|科網設
由①,②得
所以M,從而
設是平面ABM的法向量,則
所以可取m=(0,-,2).于是
因此二面角M-AB-D的余弦值為
點睛:(1)求解本題要注意兩點:①兩平面的法向量的夾角不一定是所求的二面角,②利用方程思想進行向量運算,要認真細心、準確計算.
(2)設m,n分別為平面α,β的法向量,則二面角θ與<m,n>互補或相等,故有|cos θ|=|cos<m,n>|=.求解時一定要注意結合實際圖形判斷所求角是銳角還是鈍角.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點為
,上頂點為
,直線
的斜率為
,且原點到直線
的距離為
.
(1)求橢圓的標準方程;
(2)若不經過點的直線
:
與橢圓
交于
兩點,且與圓
相切.試探究
的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若圓經過坐標原點和點
,且與直線
相切, 從圓
外一點
向該圓引切線
,
為切點,
(Ⅰ)求圓的方程;
(Ⅱ)已知點,且
, 試判斷點
是否總在某一定直線
上,若是,求出
的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線與
軸的交點為
,點
是直線
上兩動點,且以
為直徑的圓
過點
,圓
是否過定點?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知點A(2,0),B(2,0),動點M(x,y)滿足直線AM與BM的斜率之積為.記M的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線;
(2)過坐標原點的直線交C于P,Q兩點,點P在第一象限,PE⊥x軸,垂足為E,連結QE并延長交C于點G.
(i)證明:是直角三角形;
(ii)求面積的最大值.
(二)選考題:共10分.請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】邊長為的等邊三角形內任一點到三邊距離之和為定值,這個定值等于
;將這個結論推廣到空間是:棱長為
的正四面體內任一點到各面距離之和等于________________.(具體數值)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有關于的一元二次方程
.
(Ⅰ)若是從
四個數中任取的一個數,
是從
三個數中任取的一個數,求上述方程有實根的概率.
(Ⅱ)若是從區間
任取的一個數,
是從區間
任取的一個數,求上述方程有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列四個命題:
(1)“若,則
,
互為倒數”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則
無實數解”的否命題;
(4)命題:“空間中到一個正四面體的六條棱所在的直線距離均相等的點有且只有個”; 其中真命題( )
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(2)(4)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com