【題目】設偶函數和奇函數
的圖象如圖所示,集合A
與集合B
的元素個數分別為a,b,若
,則a+b的值不可能是( )
A. 12B. 13C. 14D. 15
【答案】D
【解析】
利用f(x),g(x)圖象,分別判斷g(x)=t和f(x)=t,在<t<1時的取值情況,進行分類討論即可.
由條件知,第一個圖象為f(x)的圖象,第二個為g(x)的圖象.
由圖象可知若f(x)=0,則x有3個解,為x=﹣,x=0,x=
,若g(x)=0,則x有3個解,不妨設為x=-n,x=0,x=n,(0<n<1)
當f(g(x)﹣t)=0得g(x)﹣t=,或g(x)﹣t=0,或g(x)﹣t=﹣
,.
即g(x)=t+,或g(x)=t,或g(x)=t﹣
.
<t<1時,
若g(x)=t,得x有3個解;
若g(x)=t﹣
,此時x有3個解;
若g(x)=t+
,此時方程無解.所以a=3+3=6.
當g(f(x)﹣t)=0得f(x)﹣t=n,或f(x)﹣t=0或f(x)﹣t=﹣n.
即f(x)=t+n,或f(x)=t,或f(x)=t﹣n.
<t<1,0<n<1,
若f(x)=t,所以此時x有4個解.
若f(x)=t+n,當0<n<,則
<t+n<
,此時x有4個解或2解或0個解.對應f(x)=t﹣n∈(0,1)有4個解,
此時b=4+4+4=12或b=4+2+4=10或b=4+0+4=8.
若,則1<t+n<2,此時x無解.對應f(x)=t﹣n∈(
,
)有2個解或3解或4個解.
所以此時b=4+2=6或b=4+3=7或b=4+4=8.
綜上b=12或10或8或6或7.所以a+b=18或16或14或13或12.
故選:D.
科目:高中數學 來源: 題型:
【題目】兩地相距
,現計劃在兩地間以
為端點的線段上,選擇一點
處建造畜牧養殖場,其對兩地的影響度與所選地點到兩地的距離有關,對
地和
地的總影響度為對地和地的影響度之和,記點
到
地的距離為
,建在
處的畜牧養殖場對
地和
地的總影響度為
.統計調查表明:畜牧養殖場對
地的影響度與所選地點到
地的距離成反比,比例系數為
;對
地的影響度與所選地點到
地的距離成反比,比例系數為
,當畜牧養殖場建在線段
中點處時,對
地和
地的總影響度為
.
(1)將表示為
的函數,寫出函數的定義域;
(2)當點到地
的距離為多少時,建在此處的畜牧養殖場對
地和
地的總影響度最小?并求出總影響度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在多面體中,四邊形
為平行四邊形,平面
平面
,
,
,
,
,
,
,點
是棱
上的動點.
(Ⅰ)當時,求證
平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)若二面角所成角的余弦值為
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com