【題目】已知函數f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在區間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)﹣mx在[2,4]上為單調函數,求實數m的取值范圍.
【答案】
(1)解:由于函數f(x)=ax2﹣2ax+2+b=a(x﹣1)2+2+b﹣a,(a≠0),對稱軸為x=1,
當a>0時,函數f(x)在區間[2,3]上單調遞增,由題意可得 ,
解得 .
當a<0時,函數f(x)在區間[2,3]上單調遞減,由題意可得 ,
解得 .
綜上可得, ,或
(2)解:若b<1,則由(1)可得 ,g(x)=f(x)﹣mx=x2﹣(m+2)x+2,
再由函數g(x)在[2,4]上為單調函數,可得 ≤2,或
≥4,
解得 m≤2,或m≥6,
故m的范圍為(﹣∞,2]∪[6,+∞)
【解析】(1)根據函數的解析式不難得出其對稱軸為x=1,對a進行分類討論,當a>0時f(2)=2,f(3)=5,當a<0時f(2)=5,f(3)=2,解出a,b,(2)當b小于1時,由(1)可得,a=1,b=0,寫出g(x)的解析式,根據二次函數的單調性解出m的取值范圍.
【考點精析】認真審題,首先需要了解函數單調性的性質(函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集),還要掌握二次函數在閉區間上的最值(當時,當
時,
;當
時在
上遞減,當
時,
)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知集合D= ,有下面四個命題:
p1:(x,y)∈D, ≥3 p2:(x,y)∈D,
<1
p3:(x,y)∈D, <4 p4:(x,y)∈D,
≥2
其中的真命題是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,常數a>0.
(1)設mn>0,證明:函數f(x)在[m,n]上單調遞增;
(2)設0<m<n且f(x)的定義域和值域都是[m,n],求常數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列函數:①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x
,⑤f(x)=﹣x2+1中,既是偶函數,又是在區間(0,+∞)上單調遞減函數為 . (寫出符合要求的所有函數的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= +
.
(1)求函數f(x)的定義域和值域;
(2)設F(x)= [f2(x)﹣2]+f(x)(a為實數),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數a及t∈[﹣1,1]恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com