日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
定義y=log(1+x)F(x,y),x>0,y>0.
(1)比較F(1,3)與F(2,2)的大小;
(2)若e<x<y,證明:F(x-1,y)>F(y-1,x);
(3)設函數f(x)=F[1,log2(x3+ax2+bx+1)]的圖象為曲線C.曲線C在x0處的切線的斜率為k,若x0∈(1,1-a)且存在實數b使得k=-4,求實數a的取值范圍.
考點:對數函數圖象與性質的綜合應用
專題:函數的性質及應用
分析:(1)由定義知F(x,y)=(1+x)y,x>0,y>0,由此能比較比較F(1,3)與F(2,3)的大小.
(2)F(x-1,y)=xy,F(y-1,x)=yx,要證F(x-1,y)>F(y-1,x),只要證xy>yx,由此能證明不等式F(x-1,y)>F(y-1,x)成立.
(3)由題意知:f(x)=x3+ax2+bx+1,且f′(x0)=k,于是有3x02+2ax0+b=-4 在x0∈(1,1-a)上有解.由此利用分類討論思想結合導數性質能求出實數a的取值范圍.
解答: 解:(1)由定義知F(x,y)=(1+x)y,x>0,y>0,
∴F(1,3)=(1+1)3=8,F(2,2)=(1+2)2=9,
∴F(1,3)<f(2,2).…(3分)
(2)F(x-1,y)=xy,F(y-1,x)=yx
要證F(x-1,y)>F(y-1,x),只要證xy>yx
∵xy>yx
∴ylnx>xlny,
lnx
x
lny
y
,…(5分)
令h(x)=
lnx
x
,則h′(x)=
1-lnx
x2

當x>e時,h′(x)<0,
∴h(x)在(e,+∞)上單調遞減.
∵e<x<y,
∴h(x)>h(y),即
lnx
x
lny
y

∴不等式f(x-1,y)>f(y-1,x)成立.…(8分)
(3)由題意知:f(x)=x3+ax2+bx+1,且g′(x0)=k,
于是有3x02+2ax0+b=-4 在x0∈(1,1-a)上有解.
又由定義知log2(x03+ax02+bx0+1)>0,
即x03+ax02+bx0>0,
∵x0>1,
∴x02+ax0>-b,
∴x02+ax0>3x02+2ax0+4,
即ax0<-2(x02+2),
∴a<-2(x0+
2
x0
)在x0∈(1,1-a)有解.…(10分)
設V(x0)=x0+
2
x0
,x0∈(1,1-a),
①當1-a>
2
,即a<1-
2
時,V(x0)=x0+
2
x0
≥2
2

當且僅當x0=
2
時,V(x0)min=2
2

∴當x0=
2
時,-2(x0+
2
x0
max=-4
2

∴a<-4
2
.…(12分)
②當1<1-a≤
2
時,即1-
2
≤a<0時,V(x0)=x0+
2
x0
在x0∈(1,1-a)上遞減,
∴x0+
2
x0
>1-a+
2
1-a

∴a<-2[(1-a)+
2
1-a
]
整理得:a2-3a+6<0,無解,…(13分)
綜上所述,實數a的取值范圍為(-∞,-4
2
).…(14分)
點評:本題考查兩數大小的比較,考查不等式的證明,考查實數的取值范圍的求法,解題時要認真審題,注意導數性質的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若集合A⊆X,X為全集,則稱函數fA(x)=
1,x∈A
0,x∉A
為A的特征函數.記CxA=
.
A
那么,對A,B⊆X,下列命題不正確的是(  )
A、A⊆B⇒fA(x)≤fB(x),?x∈X
B、f
.
A
(x)=1-fA(x),?x∈X
C、fA∩B(x)=fA(x)fB(x),?x∈X
D、fA∪B(x)=fA(x)+fB(x),?x∈X

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,頂點D,C分別在AM,BN上運動(點D不與A重合,點C不與B重合),E是AB上的動點(點E不與A,B重合),在運動過程中始終保持DE⊥CE,且AD+DE=AB=a.
(1)求證:△ADE∽△BEC;
(2)設AE=m,請探究:△BEC的周長是否與m值有關,若有關請用含m的代數式表示△BEC的周長;若無關請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(Ⅰ)若實數s,t是方程20x2+14x+1=0的兩不等實根,求值:s2+t2
(Ⅱ)若實數s,t分別滿足20s2+14s+1=0,t2+14t+20=0且st≠1,求值:
st+4s+1
t

查看答案和解析>>

科目:高中數學 來源: 題型:

在銳角△ABC中,三個內角A、B、C所對的邊依次為a、b、c.設向量
m
=(cosA,sinA),
n
=(cosA,-sinA),a=2
3
,且
m
n
=-
1
2

(1)若b=2,求△ABC的面積;
(2)求b+c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知矩形ABCD,AB=4,AD=3,O是AC上一點,CO=
9
5
,E,F分別是AB,CD的中點,現把矩形ABCD沿著對角線AC折成一個大小為θ的二面角D′-AC-B.
(Ⅰ)若θ=90°,求證BO⊥AD′;
(Ⅱ)當θ=60°時,求直線EF與平面ABC所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知x∈R,a∈R且a≠0,向量
OA
=(acos2x,1),
OB
=(2,
3
asin2x-a),f(x)=
OA
OB

(Ⅰ)求函數f(x)的解析式,并求當a>0時,f(x)的單調遞增區間;
(Ⅱ)當x∈[0,
π
2
]時,f(x)的最大值為5,求a的值.
(Ⅲ)當a=1時,若不等式|f(x)-m|<2在x∈[0,
π
2
]上恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x>0},B={x|x2-(a+b)x+ab<0,a,b∈R},D=A∩B,函數f(x)=x3+x2+bx+1
(1)當b=1時,求函數f(x)在點(1,f(1))處的切線方程;
(2)當a=b+1,且f(x)在D上有極小值時,求b的取值范圍;
(3)在(2)的條件下,不等式f(x)≤1對任意的x∈D恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩個動點A、B和一個定點M(x0,y0)均在拋物線y2=2px(p>0)上,設F為此拋物線的焦點,Q為其對稱軸上一點,若(
QA
+
1
2
AB
)•
AB
=0,且|
FA
|,|
FM
|,|
FB
|成等差數列.
(1)求
OQ
的坐標;
(2)若|
OQ
|=3,|
FM
|=2,求|
AB
|的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品1区 | 国内av在线 | 国产精品自拍第一页 | 九色网址 | 特级丰满少妇一级aaaa爱毛片 | 欧美手机在线 | 深夜福利在线播放 | 国产精品国产成人国产三级 | 久久久精品影院 | 国产免费无遮挡 | 我要看一级黄色片 | 亚洲一级精品 | 久久久久综合 | 久久精品99久久久久久 | 黄色小视频在线播放 | 午夜影院免费 | 日本不卡在线视频 | 91精品网 | 美日韩精品 | 国产一区二区在线看 | 特黄毛片 | 91午夜理伦私人影院 | 亚洲一级特黄 | 亚洲免费成人 | 国产精品一级 | 成年人视频在线播放 | 中国女人真人一级毛片 | 久久精品国产成人av | 91操操操 | 17c一起操| 91丨九色丨蝌蚪丨丝袜 | 国产精品一区二区在线播放 | 毛片av在线 | 91小视频在线观看 | 亚洲综合欧美 | 夜夜欢天天干 | 天天操天天操 | 亚洲激情自拍 | 手机在线看片1024 | 欧美特黄一级 | 黄色小视频在线免费观看 |