日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.已知$α,β∈({\frac{3π}{4},π})$,$cos(α+β)=\frac{4}{5},cos(β-\frac{π}{4})=-\frac{5}{13}$,則$sin(α+\frac{π}{4})$=( 。
A.$\frac{33}{65}$B.$-\frac{33}{65}$C.$-\frac{16}{65}$D.$\frac{16}{65}$

分析 由已知利用同角三角函數基本關系式可求sin(α+β),sin($β-\frac{π}{4}$)的值,由兩角差的正弦函數公式即可計算得解$sin(α+\frac{π}{4})$的值.

解答 解:∵$α,β∈({\frac{3π}{4},π})$,$cos(α+β)=\frac{4}{5},cos(β-\frac{π}{4})=-\frac{5}{13}$,
∴α+β∈($\frac{3π}{2}$,2π),$β-\frac{π}{4}$∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴sin(α+β)=-$\sqrt{1-co{s}^{2}(α+β)}$=-$\frac{3}{5}$,sin($β-\frac{π}{4}$)=$\sqrt{1-co{s}^{2}(β-\frac{π}{4})}$=$\frac{12}{13}$,
∴$sin(α+\frac{π}{4})$=sin[(α+β)-($β-\frac{π}{4}$)]=sin(α+β)cos($β-\frac{π}{4}$)-cos(α+β)sin($β-\frac{π}{4}$)
=(-$\frac{3}{5}$)×$(-\frac{5}{13})$-$\frac{4}{5}×\frac{12}{13}$=-$\frac{33}{65}$.
故選:B.

點評 本題主要考查了同角三角函數基本關系式,兩角差的正弦函數公式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.已知sin α=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求tan($\frac{π}{4}-α$)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.若圓錐的底面半徑為1,母線長為3,則該圓錐的側面積等于3π.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知集合A={x|$\frac{x+3}{x+1}$≤0},B={-2,-1,0,1},則A∩B的子集個數為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知數列{an}的前n項和為Sn,且a1=5,nSn+1-(n+1)Sn=n2+n.
(Ⅰ)求證:數列{$\frac{{S}_{n}}{n}$}為等差數列;
(Ⅱ)若bn=$\frac{1}{(2n+1){a}_{n}}$,判斷{bn}的前n項和Tn與$\frac{1}{6}$的大小關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.設函數$f(x)=sinωx+sin(ωx-\frac{π}{2})$.
(1)若$ω=\frac{1}{2}$,求f(x)的最大值及相應的x的取值范圍;
(2)若$x=\frac{π}{8}$是f(x)的一個零點,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知直線l1:y=x+a分別與直線l2:y=2(x+1)及曲線C:y=x+lnx交于A,B兩點,則A,B兩點間距離的最小值為(  )
A.$\frac{3\sqrt{5}}{5}$B.3C.$\frac{6\sqrt{5}}{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為120°,且$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{AC}}|=2$,若$\overrightarrow{AP}=\overrightarrow{AB}+λ\overrightarrow{AC}$,且$\overrightarrow{AP}⊥\overrightarrow{BC}$,則實數λ的值為(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.在平面內,Rt△ABC中,BA⊥CA,有結論BC2=AC2+AB2,空間中,在四面體V-BCD中,VB,VC,VD兩兩互相垂直,且側面的3個三角形面積分別記為S1,S2,S3,底面△BCD的面積記為S,類比平面可得到空間四面體的一個結論是$S_{△BCD}^2=S_{△VBC}^2+S_{△VCD}^2+S_{△VDB}^2$$⇒{S^2}=S_1^2+S_2^2+S_3^2$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品国产乱码久久久久久久 | 欧美视频在线免费 | 国产精品白浆 | 日韩视频二区 | 欧美第一色 | 日日干夜夜干 | 97超碰人人干| 国产伦精品一区二区三区四区视频 | av一区二区在线观看 | 中文字幕二区 | av片免费| 久久91精品 | 99免费视频 | 久久久亚洲成人 | 青青草亚洲 | 久久亚洲国产精品 | 羞羞视频免费在线观看 | 国产精品久久久久久一级毛片 | 欧美精品福利视频 | 国产精品久久久久久久久免费丝袜 | 搞黄免费视频 | 你懂的网址在线 | 精品毛片在线 | 日本在线免费播放 | 亚洲精品在线播放视频 | 国产丝袜人妖ts黄檬 | 亚洲黄色三级 | 中文字幕av第一页 | 国产久 | 精品乱子伦一区二区三区 | 成人天堂资源www在线 | 成人精品一区二区三区 | 天天干人人 | 亚洲一区在线播放 | 成人久久久精品乱码一区二区三区 | 欧美日韩精品一区二区三区四区 | 一级黄色片网址 | 日本亚洲欧美 | 国产精品久久久久影院色老大 | 久久精品欧美 | 日韩在线播放欧美字幕 |