分析 (1)乘以“1”,換成sin2x+cos2x=1,利用基本不等式的性質求解.
(2)利用韋達定理求解.
解答 解:(1)函數$f(x)=\frac{1}{{{{sin}^2}x}}+\frac{4}{{{{cos}^2}x}}=({sin^2}x+{cos^2}x)(\frac{1}{{{{sin}^2}x}}+\frac{4}{{{{cos}^2}x}})$=$5+\frac{{{{cos}^2}x}}{{{{sin}^2}x}}+\frac{{4{{sin}^2}x}}{{{{cos}^2}x}}≥5+2\sqrt{4}=9$,
當4sin4x=cos4x時取最小值9.
(2)不等式ax2+bx+c>0的解集為(α,β),
由$\frac{b}{c}=-(\frac{1}{α}+\frac{1}{β})$,$\frac{a}{c}=\frac{1}{αβ}$知$\frac{1}{α}$、$\frac{1}{β}$是方程${x^2}+\frac{b}{c}x+\frac{a}{c}=0$的兩根,
又∵0<α<β,∴$0<\frac{1}{β}<\frac{1}{α}$.而由已知不等式的解集知a<0且$αβ=\frac{c}{a}>0$,
∴c<0,
∴不等式cx2+bx+a<0的解集為$\left\{{x|x<\frac{1}{β}或x>\frac{1}{α}}\right\}$.
點評 本題考查了基本不等式中“1”利用和二次不等式的解法,韋達定理的運用能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com