【題目】對于定義在上的函數
,若存在正常數
、
,使得
對一切
均成立,則稱
是“控制增長函數”,在以下四個函數中:①
;②
;③
;④
.是“控制增長函數”的有( )
A.②③B.③④C.②③④D.①②④
科目:高中數學 來源: 題型:
【題目】已知,
,…,
是由
(
)個整數
,
,…,
按任意次序排列而成的數列,數列
滿足
(
),
,
,…,
是
,
,…,
按從大到小的順序排列而成的數列,記
.
(1)證明:當為正偶數時,不存在滿足
(
)的數列
.
(2)寫出(
),并用含
的式子表示
.
(3)利用,證明:
及
.(參考:
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是公比大于
的等比數列,
為數列
的前
項和,
,且
,
,
成等差數列.數列
的前
項和為
,
滿足
,且
,
(1)求數列和
的通項公式;
(2)令,求數列
的前
項和為
;
(3)將數列,
的項按照“當
為奇數時,
放在前面;當
為偶數時,
放在前面”的要求進行排列,得到一個新的數列:
,
,
,
,
,
,
,
,
,
,
,
,求這個新數列的前
項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,底面
是直角梯形,其中
,
,
,
,
為棱
上的點,且
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設為棱
上的點(不與
,
重合),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用一個長為,寬為
的矩形鐵皮(如圖1)制作成一個直角圓形彎管(如圖3):先在矩形的中間畫一條曲線,并沿曲線剪開,將所得的兩部分分別卷成體積相等的斜截圓柱狀(如圖2),然后將其中一個適當翻轉拼接成直角圓形彎管(如圖3)(不計拼接損耗部分),并使得直角圓形彎管的體積最大;
(1)求直角圓形彎管(圖3)的體積;
(2)求斜截面橢圓的焦距;
(3)在相應的圖1中建立適當的坐標系,使所畫的曲線的方程為,求出方程并畫出大致圖像;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數方程為:
(t為參數),直線l與曲線C分別交于
兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的一個焦點為
,離心率為
.
(1)求的標準方程;
(2)若動點為
外一點,且
到
的兩條切線相互垂直,求
的軌跡
的方程;
(3)設的另一個焦點為
,過
上一點
的切線與(2)所求軌跡
交于點
,
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com