如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點B在以AC為直徑的圓上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)證明:SC⊥EF;
(II)若求三棱錐S—AEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點.
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點.
(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面
所截而得.
,
為
的中點.
(1)當時,求平面
與平面
的夾角的余弦值;
(2)當為何值時,在棱
上存在點
,使
平面
?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,在平行四邊形中,
,將它們沿對角線
折起,折后的點
變為
,且
.
(Ⅰ)求證:平面平面
;
(Ⅱ)為線段
上的一個動點,當線段
的長為多少時,
與平面
所成的角為
?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)在四棱錐中,底面ABCD是邊長為1的正方形,
平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN //平面PAD (2)求點B到平面AMN的距離
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com