科目:高中數學 來源: 題型:解答題
(本題滿分12分)提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般 情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數.當
橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20
輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度 x的一次函數.
(1)當0≤x≤200時,求函數v (x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義域為R,滿足:①
;
②對任意實數,有
.
(Ⅰ)求,
的值;
(Ⅱ)判斷函數的奇偶性與周期性,并求的值;
(Ⅲ)是否存在常數,使得不等式
對一切實數
成立.如果存在,求出常數
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
.已知函數, 其反函數為
(1) 若的定義域為
,求實數
的取值范圍;
(2) 當時,求函數
的最小值
;
(3) 是否存在實數,使得函數
的定義域為
,值域為
,若存在,求出
、
的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分)
已知函數f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 試討論函數f (x )的單調性;
(Ⅱ) 若a>0,求函數f (x ) 在[1,2]上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知函數y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數,當x>0時,f(x)有最小值2,其中b∈N且f(1)<
.試求函數f(x)的解析式
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com