分析 (1)根據(jù)等邊三角形的性質(zhì)得出∠CAB=∠CBA=60°,AC=BC,EC=DC,求出AE=BD,根據(jù)SAS推出△AEB≌△BDA即可;
(2)根據(jù)等邊三角形的性質(zhì)得出AC=BC,EC=DC,∠ACD=∠BCE=60°,根據(jù)SAS推出△ACD≌△BCE即可.
解答 (1)證明:∵△ABC和△EDC是等邊三角形,
∴∠CAB=∠CBA=60°,AC=BC,EC=DC,
∴AC-EC=BC-DC,
即AE=BD,
在△AEB和△BDA中,
$\left\{\begin{array}{l}{AE=BD}\\{∠EAB=∠DBA}\\{AB=BA}\end{array}\right.$,
∴△AEB≌△BDA(SAS),
∴AD=BE;
(2)解:成立,
理由是:∵△ABC和△EDC是等邊三角形,
∴AC=BC,EC=DC,∠ACD=∠BCE=60°,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{DC=EC}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,能推出兩三角形全等是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45° | B. | 60° | C. | 90° | D. | 100° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 1 | C. | $-\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25.30千克 | B. | 24.70千克 | C. | 25.51千克 | D. | 24.80千克 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com