【題目】如圖所示,在平面直角坐標系中,拋物線的頂點坐標為
,并與
軸交于點
,點
是對稱軸與
軸的交點.
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個動點,且位于第一象限,連結BP、AP,求
的面積的最大值;
(3)如圖②所示,在對稱軸的右側作
交拋物線于點
,求出
點的坐標;并探究:在
軸上是否存在點
,使
?若存在,求點
的坐標;若不存在,請說明理由.
【答案】(1);(2)當
時,
最大值為
;(3)存在,
點坐標為
,理由見解析
【解析】
(1)利用待定系數法可求出二次函數的解析式;
(2)求三角形面積的最值,先求出三角形面積的函數式.從圖形上看S△PAB=S△BPO+S△APO-S△AOB,設P求出關于n的函數式,從而求S△PAB的最大值.
(3) 求點D的坐標,設D,過D做DG垂直于AC于G,構造直角三角形,利用勾股定理或三角函數值來求t的值即得D的坐標;探究在y軸上是否存在點
,使
?根據以上條件和結論可知∠CAD=120°,是∠CQD的2倍,聯想到同弧所對的圓周角和圓心角,所以以A為圓心,AO長為半徑做圓交y軸與點Q,若能求出這樣的點,就存在Q點.
解:拋物線頂點為
可設拋物線解析式為
將代入
得
拋物線
,即
連接
,
設點坐標為
當
時,
最大值為
存在,設點D的坐標為
過作對稱軸的垂線,垂足為
,
則
在中有
化簡得
(舍去),
∴點D(,-3)
連接,在
中
在以
為圓心,
為半徑的圓與
軸的交點上
此時
設點為(0,m), AQ為
的半徑
則AQ=OQ+OA, 6=m+3
即
∴
綜上所述,點坐標為
故存在點Q,且這樣的點有兩個點.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于點
,頂點坐標
與y軸交在
,
之間(包含端點),則下列結論:①
;②
;③對于任意實數m,
總成立;④關于x的方程
有兩個不等的實根. 其中正確的個數是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數的解析式;
(2)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x﹣m)2+2m(m≠0)經過原點,其頂點為P,與x軸的另一交點為A.
(1)P點坐標為 ,A點坐標為 ;(用含m的代數式表示)
(2)求出a,m之間的關系式;
(3)當m>0時,若拋物線y=a(x﹣m)2+2m向下平移m個單位長度后經過點(1,1),求此拋物線的表達式;
(4)若拋物線y=a(x﹣m)2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AD的中點,延長CE交BA的延長線于點F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,BC=6,線段AC的垂直平分線MN分別交AC、AB于M、N兩點,則△BCN的面積是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】紅紅和娜娜按下圖所示的規則玩“錘子、剪刀、布”游戲,
游戲規則:若一人出“剪刀”,另一人出“布”,則出“剪刀”者勝;若一人出“錘子”,另一人出“剪刀”,則出“錘子”者勝;若一人出“布”,另一人出“錘子”,則出“布”者勝,若兩人出相同的手勢,則兩人平局.
下列說法中錯誤的是
A. 紅紅不是勝就是輸,所以紅紅勝的概率為
B. 紅紅勝或娜娜勝的概率相等
C. 兩人出相同手勢的概率為
D. 娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com