在一次消防演習(xí)中,消防員架起一架25米長的云梯AB,如圖斜靠在一面墻上,梯子底端B離墻角C的距離為7米.
(1)求這個(gè)梯子的頂端距地面AC有多高?
(2)如果消防員接到命令,按要求將梯子底部在水平方向滑動后停在DE的位置上(云梯長度不變),測得BD長為8米,那么云梯的頂部在下滑了多少米?
【考點(diǎn)】勾股定理的應(yīng)用.
【分析】(1)直接利用勾股定理求得直角邊AC的長即可;
(2)首先求得CD的長,然后利用勾股定理求得線段EC的長,最后求得線段AE的長即可.
【解答】解:(1)由圖可以看出梯子墻地可圍成一個(gè)直角三角形,
即梯子為斜邊,梯子底部到墻的距離線段為一個(gè)直角邊,梯子頂端到地的距離線段為另一個(gè)直角邊,
所以梯子頂端到地的距離為252﹣72=242,所以梯子頂端到地為24米.
(2)當(dāng)梯子頂端下降4米后,梯子底部到墻的距離變?yōu)?52﹣(24﹣4)2=152,
15﹣7=8所以,梯子底部水平滑動8米即可.
【點(diǎn)評】此題為利用勾股定理解直角三角形問題,會利用勾股定理即可,難度適中.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠ACB=30°,則∠AOB的大小為( 。
A.30° B.60° C.90° D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
Rt△ABC與Rt△FED是兩塊全等的含30°、60°角的三角板,按如圖(一)所示拼在一起,CB與DE重合.
(1)求證:四邊形ABFC為平行四邊形;
(2)取BC中點(diǎn)O,將△ABC繞點(diǎn)O順時(shí)鐘方向旋轉(zhuǎn)到如圖(二)中△A′B′C′位置,直線B'C'與AB、CF分別相交于P、Q兩點(diǎn),猜想OQ、OP長度的大小關(guān)系,并證明你的猜想;
(3)在(2)的條件下,指出當(dāng)旋轉(zhuǎn)角至少為多少度時(shí),四邊形PCQB為菱形?(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個(gè)式子的平方,如3+=(1+
)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n
)2(其中a、b、m、n均為整數(shù)),則有a+b
=m2+2n2+2mn
.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=
,用含m、n的式子分別表示a、b,得:a= ,b= ;
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + =( +
)2;
(3)若a+4=
,且a、m、n均為正整數(shù),求a的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在扇形AOB中,∠AOB=90°,半徑OA=6,將扇形AOB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在弧AB上點(diǎn)D處,折痕交OA于點(diǎn)C,整個(gè)陰影部分的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F.
(1)求證:AE為⊙O的切線.
(2)當(dāng)BC=8,AC=12時(shí),求⊙O的半徑.
(3)在(2)的條件下,求線段BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com