A. | 2$\sqrt{2}$ | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
分析 聯立正、反比例函數解析式成方程組,解之可求出點A、B的坐標,進而可得出OB=2,再根據OC=OB結合三角形的面積公式即可得出結論.
解答 解:聯立正、反比例函數解析式成方程組,
$\left\{\begin{array}{l}{y=-x}\\{y=-\frac{2}{x}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=-\sqrt{2}}\\{{y}_{1}=\sqrt{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=\sqrt{2}}\\{{y}_{2}=-\sqrt{2}}\end{array}\right.$,
∴點A的坐標為(-$\sqrt{2}$,$\sqrt{2}$),點B的坐標為($\sqrt{2}$,-$\sqrt{2}$).
∴OB=$\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}$=2.
∵OC=OB,
∴S△AOC=$\frac{1}{2}$OC•|xA|=$\frac{1}{2}$×2×$\sqrt{2}$=$\sqrt{2}$.
故選D.
點評 本題考查了反比例函數與一次函數的交點問題以及三角形的面積,聯立正、反比例函數解析式成方程組求出兩函數圖象的交點坐標是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{a}{b}$×$\frac{b}{a}$=1 | B. | $\frac{b}{a}$+$\frac{c}{a}$=$\frac{b+c}{a}$ | ||
C. | ($\frac{a}{b}$)2=$\frac{({a}^{2}+2a)}{({b}^{2}+2b)}$ | D. | $\frac{a}{a}$=1 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com