【題目】如圖,已知⊙O為四邊形ABCD的外接圓,O為圓心,若∠BCD=120°,AB=AD=2,則⊙O的半徑長為( )
A.
B.
C.
D.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點
在邊
上,
點
為邊
上一動點,連接
與
關于
所在直線對稱,點
分別為
的中點,連接
并延長交
所在直線于點
,連接
.當
為直角三角形時,
的長為_________ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】類比思想就是根據已經學習過的知識,類比探究新知識的思想方法.我們在探究矩形、菱形、正方形等問題中的數量關系時,經常用到類比思想.某數學興趣小組在數學課外活動中,研究三角形和正方形的性質時,做了如下探究:在中,
點
為直線
上一動點(點
不與
重合),以
為邊在
右側作正方形
連接
.
(1)(觀察猜想)如圖①,當點在線段
上時;
①與
的位置關系為: ;
②之間的數量關系為: ;(將結論直接寫在橫線上)
(2)(數學思考)如圖②,當點在線段
的延長線上時,結論①②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;
(3)(拓展延伸)如圖③,當點在線段
的延長線上時,延長
交
于點
,連接
.若已知
請直接寫出
的長.(提示: .過
作
于
過
作
于
于
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥EF,∠C=90°,∠B,∠D,∠E三個角的大小分別是x,y,z則x,y,z之間滿足的關系式是( )
A. x+z=yB. x+y+═180°C. x+y﹣z=90°D. y+z﹣x=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設∠OAC=x,
(1)如圖1,若AB∥ON,則
①∠ABO的度數是______;
②當∠BAD=∠ABD時,x=______;
當∠BAD=∠BDA時,x=______;
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,地面上小山的兩側有A,B兩地,為了測量A,B兩地的距離,讓一熱氣球從小山西側A地出發沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達C處,此時熱氣球上的人測得CB與AB成70°角,請你用測得的數據求A,B兩地的距離AB長.(結果用含非特殊角的三角函數和根式表示即可)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com