
解:方法一:連接BC,
∵BE⊥AC于E,CF⊥AB于F,
∴∠CFB=∠BEC=90°,
∵AB=AC,
∴∠ABC=∠ACB,
在△BCF和△CBE中
∵

∴△BCF≌△CBE(AAS),
∴BF=CE,
在△BFD和△CED中
∵

,
∴△BFD≌△CED(AAS),
∴DF=DE,
∴AD平分∠BAC.
方法二:先證△AFC≌△AEB,得到AE=AF,再用(HL)證△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.
分析:連接BC,先證明△BCF≌△CBE,則BF=CE,則Rt△BFD≌Rt△CED(AAS),所以DF=DE,由角平分線的逆定理可得AD平分∠BAC.
點評:此題主要考查角平分線的性質和全等三角形的判定和性質,難度中等,作輔助線很關鍵.