【題目】如圖,在△ABC中,AB=5,AC=13,AD是中線,且AD=6.
(1)延長AD到E,使DE=AD,連結CE.
①結合提示畫出圖形;
②結合圖形寫出你認為正確的兩條結論,并選其中一條加以證明;
(2)請直接寫出所求的線段BC的長度.
【答案】(1)①見解析;②△CDE≌△BDA,∠E=90°,理由見解析;(2)2
【解析】
(1)①根據題意,畫圖即可;
②利用SAS即可證出△CDE≌△BDA,再根據勾股定理的逆定理即可證出△ACE是直角三角形,∠E=90°;
(2)根據勾股定理即可求出CD的長,從而求出BC的長度.
(1)①如圖所示:
②△CDE≌△BDA,∠E=90°,理由如下:
∵AD是△ABC的中線,
∴CD=BD,
在△CDE和△BDA中,
,
∴△CDE≌△BDA(SAS);
∴CE=BA=5,
∵DE=AD=6,
∴AE=2AD=12,
∴CE2+AE2=52+122=132=AC2,
∴△ACE是直角三角形,∠E=90°;
(2)由(1)得:∠E=90°,
∴CD==
=
,
∴BC=2CD=2.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,
,
,
.
分別是線段
,
上的點,連接
,使四邊形
為正方形,若點
是
上的動點,連接
,將矩形沿
折疊使得點
落在正方形
的對角線所在的直線上,對應點為
,則線段
的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=x+5與x軸交于點A,直線y=﹣x+b與x軸交于點B(1,0),且這兩條直線交于點C.
(1)求直線BC的解析式和點C的坐標;
(2)直接寫出關于x的不等式x+5>﹣x+b的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC和△DEC都是等邊三角形,∠ACB=∠DCE=60°,B、C、E在同一直線上,連結BD和AE
(1)求證:AE=BD
(2)求∠AHB的度數
(3)求證:DF=GE
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題解決)
(1)如圖①,在等邊△ABC中,點M是BC邊上的任意一點(不含端點B,C),連結AM,以AM為邊作等邊△AMN,連結CN.試判斷∠ABC與∠ACN的大小關系.并說明理由.
(類比探究)
(2)如圖②在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其他條件不變,(1)中結論還成立嗎?請說明理由.
(拓展延伸)
(3)若點M是CB延長線上的任意一點(不含端點B),請直接寫出∠ACN的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接,作
的垂直平分線
分別交
,
,
于
,
,
,連接
,
,則四邊形
是菱形.
乙:分別作,
的平分線
,
,分別交
,
于
,
,連接
,則四邊形
是菱形.
根據兩人的作法可判斷( )
A. 甲正確,乙錯誤 B. 乙正確,甲錯誤
C. 甲、乙均正確 D. 甲、乙均錯誤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
.在
邊上有
個不同的點
,
,
,¨¨¨¨,
,過這
個點分別作
的內接矩形
,
,¨¨¨¨,
,設每個矩形的周長分別為
,
,¨¨¨¨,
,則
¨¨¨¨
________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com