日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知二次函數圖象的頂點坐標為M(1,0),直線y=x+m與該二次函數的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在y軸上.
(1)求m的值及這個二次函數的解析式;
(2)在x軸上找一點Q,使△QAB的周長最小,并求出此時Q點坐標;
(3)若P(a,0)是x軸上的一個動點,過P作x軸的垂線分別與直線AB和二次函數的圖象交于D、E兩點.
①設線段DE的長為h,當0<a<3時,求h與a之間的函數關系式;
②若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.

【答案】分析:(1)將A點坐標分別代入拋物線的直線,便可求出拋物線的解析式和m的值;
(2)使△QAB的周長最小,即是求AQ+BQ的值最小,作出B點關于x軸的對稱點B′,當A、Q、B′三點在一條直線上時,△QAB的周長最小;
(3)①根據P點坐標分別求出DE兩點坐標,便可求出h與a之間的函數關系式;
②存在,P點坐標為(,0),(,0).
解答:解:(1)設拋物線的解析式為y=a(x-1)2
∵點A(3,4)在拋物線上,則4=a(3-1)2
解得a=1,
∴拋物線的解析式為y=(x-1)2
∵點A(3,4)也在直線y=x+m,即4=3+m,
解得m=1;

(2)直線y=x+1與y軸的交點B的坐標為B(0,1),
B點關于x軸的對稱點B′點的坐標為B′(0,-1),
設直線AB′的解析式為y=kx+b,
將A、B′兩點坐標代入y=kx+b,
解得k=,b=-1,
∴設直線AB的解析式為y=x-1,
當A、Q、B′三點在一條直線上時,
AQ+BQ的值最小,即△QAB的周長最小,
Q點即為直線AB′與x軸的交點.
Q點坐標為

(3)①已知P點坐標為P(a,0),則E點坐標為E(a,a2-2a+1),D點坐標為D(a,a+1),
h=DE=yD-yE=a+1-(a2-2a+1)=-a2+3a,
∴h與a之間的函數關系式為h=-a2+3a(0<a<3)(3分)

②存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形
理由是∵M(1,0),
∴把x=1代入y=x+1得:y=2,
即N(1,2),
∴MN=2,
要使四邊形NMED是平行四邊形,必須DE=MN=2,
由①知DE=|-a2+3a|,
∴2=|-a2+3a|,
解得:a1=2,a2=1,a3=,a4=
∴(2,0),(1,0)(因為和M重合,舍去)(,0),(,0)
∴P的坐標是(2,0),(,0),(,0).
點評:本題是二次函數的綜合題,其中涉及到的知識點有拋物線的公式的求法和三角形的性質等知識點,是各地中考的熱點和難點,解題時注意數形結合數學思想的運用,同學們要加強訓練,屬于中檔題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知二次函數圖象的頂點為原點,直線y=
12
x+4的圖象與該二次函數的圖象交于A點(8,8),直線與x軸的交點為C,與y軸的交點為B.
(1)求B點的坐標與這個二次函數的解析式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P點作x軸的垂線與這個二次函數的圖象交于D點,與x軸交于點E.設該線段PD的長為h,點P的橫坐標為t,求h與t之間的函數解析式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點P,使得以點P、D、B為頂點的三角形與△B精英家教網OC相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數圖象的頂點是(-1,2),且過點(0,
32
)

(1)求二次函數的表達式;
(2)畫出該二次函數的圖象,并指出x為何值時,y隨的x增大而增大.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數圖象的頂點坐標為M(3,-2),且與y軸交于N(0,
52
).
(1)求該二次函數的解析式,并用列表、描點畫出它的圖象;
(2)若該圖象與x軸交于A、B兩點,在對稱軸右側的圖象上存在點C,使得△ABC的面積等于12,求出C點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數圖象的頂點在原點O,對稱軸為y軸.一次函數y=kx+1的圖象與二次函數的圖象交于A,B兩精英家教網點(A在B的左側),且A點坐標為(-4,4).平行于x軸的直線l過(0,-1)點.
(1)求一次函數與二次函數的解析式;
(2)判斷以線段AB為直徑的圓與直線l的位置關系,并給出證明;
(3)把二次函數的圖象向右平移2個單位,再向下平移t個單位(t>0),二次函數的圖象與x軸交于M,N兩點,一次函數圖象交y軸于F點.當t為何值時,過F,M,N三點的圓的面積最小?最小面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數圖象的頂點坐標為M(2,0),直線y=x+2與該二次函數的圖象交于A、B兩點,其中點A在y軸上,P為線段AB上一動點(除A,B兩端點外),過P作x軸的垂線與二次函數的圖象交于點Q,設線段PQ的長為l,點P的橫坐標為x.
(1)求出l與x之間的函數關系式,并求出l的取值范圍;
(2)在線段AB上是否存在一點P,使四邊形PQMA為梯形?若存在,求出點P的坐標及梯形PQMA的面積;若不存在,請說明理由;
(3)當2<x<6時,延長PQ、AM交于F,連接NF、PM,求證:NF⊥PM.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区二区三区免费观看 | 成人黄色精品 | 91亚洲高清| 国产精品视频看看 | 99热精品在线 | 亚洲精品白浆高清久久久久久 | 国产一区免费视频 | 国产精品久久久久国产a级 一级免费黄色 | 久久国产一区二区三区 | 久久国产视频网 | 久久久久久免费毛片精品 | 欧美一卡二卡 | 视频在线一区 | aaa日本高清在线播放免费观看 | 国产精品久久久久久久久久久久久久 | 久久99精品久久久 | 精品99在线| 国产一区二区在线播放 | 成人h精品动漫一区二区三区 | 欧美 日韩 国产 在线 | 色吊丝2288sds中文字幕 | 青青青青在线 | 免费一级欧美在线观看视频 | 久久品 | 久久成人精品一区二区三区 | 97在线免费 | 久久精品亚洲 | 得得啪在线视频 | 久久久婷 | 永久91嫩草亚洲精品人人 | 欧美日韩精品一区二区三区在线观看 | 日韩免费精品视频 | 少妇黄色 | 国产综合精品 | 韩国三级中文字幕hd久久精品 | 黄色精品网站 | 成人在线免费网站 | 日韩一区二区在线观看视频 | 成人在线视频一区二区 | 国产精品99一区二区三区 | 国产一区二区三区在线视频 |