【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,AB⊥CD,垂足為G,OG:OC=3:5,AB=8.點E為圓上一點,∠ECD=15°,將 沿弦CE翻折,交CD于點F,圖中陰影部分的面積=_________
【答案】
【解析】
連接AO,將陰影部分沿CE翻折,點F的對應點為M,連接OM,過點M作MN⊥CD于點N,根據題意可以利用勾股定理求得⊙O的半徑;得出S陰影=S弓形CBM,然后利用銳角三角函數、扇形的面積和三角形的面積即可解答本題.
解:連接AO,將陰影部分沿CE翻折,點F的對應點為M,如圖所示,
∵CD為⊙O的直徑,AB⊥CD,AB=8,
∴AG=AB=4,
∵OG:OC=3:5,AB⊥CD,垂足為G,
∴設⊙O的半徑為5k,則OG=3k,
∴(3k)2+42=(5k)2,
解得,k=1或k=1(舍去),
∴5k=5,
∴⊙O的半徑是5;
將陰影部分沿CE翻折,點F的對應點為M,
∵∠ECD=15°,由對稱性可知,∠DCM=30°,S陰影=S弓形CBM,
連接OM,則∠MOD=60°,
∴∠MOC=120°,
過點M作MN⊥CD于點N,
∴MN=MOsin60°=5×=
,
∴S陰影=S扇形OMCS△OMC==
,
即圖中陰影部分的面積是:.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖1,已知二次函數(
為常數,
)的圖象過點
和點
,函數圖象最低點
的縱坐標為
.直線
的解析式為
求二次函數的解析式;
直線
沿
軸向右平移,得直線
,
與線段
相交于點
,與
軸下方的拋物線相交于點
,過點
作
軸于點
,把
沿直線
折疊,當點
恰好落在拋物線上點
時(圖
求直線
的解析式;
在
的條件下,
與
軸交于點
,把
繞點
逆時針旋轉
得到
,P為
上的動點,當
為等腰三角形時,求符合條件的點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了傳承中華民族優秀傳統文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成圖1的條形統計圖和圖2扇形統計圖,但均不完整.請你根據統計圖解答下列問題:
(1)求參加比賽的學生共有多少名?并補全圖1的條形統計圖.
(2)在圖2扇形統計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,
,以點
為圓心,以
為半徑作優弧
,交
于點
,交
于點
.點
在優弧
上從點
開始移動,到達點
時停止,連接
.
(1)當時,判斷
與優弧
的位置關系,并加以證明;
(2)當時,求點
在優弧
上移動的路線長及線段
的長.
(3)連接,設
的面積為
,直接寫出
的取值范圍.
備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數在第一象限的圖象經過頂點A(m,m+3)和CD上的點E,且OB-CE=1。直線l過O、E兩點,則tan∠EOC的值為( )
A. B. 5 C.
D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,二次函數y=k(x﹣1)2+2的圖象與一次函數y=kx﹣k+2的圖象交于A、B兩點,點B在點A的右側,直線AB分別與x、y軸交于C、D兩點,其中k<0.
(1)求A、B兩點的橫坐標;
(2)若△OAB是以OA為腰的等腰三角形,求k的值;
(3)二次函數圖象的對稱軸與x軸交于點E,是否存在實數k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com