分析 設(shè)AD與圓的切點為G,連接BG,通過解直角三角形求得圓的半徑,然后根據(jù)扇形的面積公式求得三個扇形的面積,進而就可求得陰影的面積.
解答 解:設(shè)AD與圓的切點為G,連接BG,
∴BG⊥AD,
∵∠A=60°,BG⊥AD,
∴∠ABG=30°,
在直角△ABG中,BG=$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,AG=1,
∴圓B的半徑為$\sqrt{3}$,
∴S△ABG=$\frac{1}{2}$×1×$\sqrt{3}$=$\frac{\sqrt{3}}{2}$
在菱形ABCD中,∠A=60°,則∠ABC=120°,
∴∠EBF=120°,
∴S陰影=2(S△ABG-S扇形)+S扇形FBE=2×($\frac{\sqrt{3}}{2}$-$\frac{30π×3}{360}$)+$\frac{120π×3}{360}$=$\frac{π}{2}$+$\sqrt{3}$.
故答案為:$\frac{π}{2}$+$\sqrt{3}$.
點評 此題主要考查了菱形的性質(zhì)以及切線的性質(zhì)以及扇形面積等知識,正確利用菱形的性質(zhì)和切線的性質(zhì)求出圓的半徑是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 50° | C. | 80° | D. | 100° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | A→C→E→B | B. | A→C→D→B | C. | A→C→G→B | D. | A→C→F→E→B |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com