閱讀與思考:
整式乘法與因式分解是方向相反的變形
由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);
利用這個式子可以將某些二次項系數是1的二次三項式分解因式,
例如:將式子x2+3x+2分解因式.
分析:這個式子的常數項2=1×2,一次項系數3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.
解:x2+3x+2=(x+1)(x+2)
請仿照上面的方法,解答下列問題
(1)分解因式:x2+7x﹣18=
啟發應用
(2)利用因式分解法解方程:x2﹣6x+8=0;
(3)填空:若x2+px﹣8可分解為兩個一次因式的積,則整數p的所有可能值是 .
【考點】因式分解-十字相乘法等.
【專題】閱讀型;因式分解.
【分析】(1)原式利用題中的方法分解即可;
(2)方程利用因式分解法求出解即可;
(3)找出所求滿足題意p的值即可.
【解答】解:(1)原式=(x﹣2)(x+9);
(2)方程分解得:(x﹣2)(x﹣4)=0,
可得x﹣2=0或x﹣4=0,
解得:x=2或x=4;
(3)﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2,
則p的可能值為﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.
故答案為:(1)(x﹣2)(x+9);(3)7或﹣7或2或﹣2.
【點評】此題考查了因式分解﹣十字相乘法,弄清題中的分解因式方法是解本題的關鍵.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com